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1 Introduction

Global changes in the climate are resulting in substantial deviations of temperature from
its historical norm, commonly known as a temperature anomaly. Climate science has de-
termined two key facts regarding the distribution of temperature anomalies: that both the
mean and variability have increased as illustrated in Figure 1. Much of the prior discussion
centers on understanding the financial repercussions of the first fact, geographically identi-
fying deviations of observed temperatures from the historical averages (mean temperature)
and evaluating their effects on asset prices (e.g., Schlenker and Taylor (2021), Acharya et al.
(2022), Pankratz et al. (2023), Addoum et al. (2021)). Although studies by Choi et al. (2020)
and Kruttli et al. (2021) suggest that fluctuations in average temperature have an impact on
investor attention and expectations, it is unclear whether these effects translate into signif-
icant changes in firm performance, as evidenced by the less conclusive findings reported by
Addoum et al. (2020).

Running concurrent to this debate is the push from various government agencies such
as the Securities and Exchange Commission (SEC) and the European Financial Reporting
Advisory Group (EFRAG) that have been advocating for greater transparency from com-
panies regarding the disclosure of material physical climate risks. However, the materiality
of such risks remains unclear for many firms, prompting agencies like the European Central
Bank (ECB) and the International Financial Reporting Standards (IFRS) Foundation with
the International Sustainability Standards Board (ISSB) initiative, to release sets of statisti-
cal indicators aimed at improving the assessment of climate-related risks by financial actors.1
Our investigation, motivated by these needs, studies the evolving distribution of temperature
anomalies and their impact on asset prices. We find that shocks to the variability of temper-
ature anomalies, rather than to the mean, change investor attention and expectations, and
materially influence firm performance.2

The key innovation in this paper is the development of two replicable metrics, TA and
TAV , that capture shocks to the mean and standard deviation of temperature anomalies,
respectively. We observe that equity returns largely do not respond to deviation in the
mean of temperature anomalies, but rather to changes in the variability. At the industry
level, we find that the utility, energy, consumer discretionary, and consumer staples sectors
are the most impacted. We attribute these return deviations to three primary factors: an
investor attention channel, a reduction in cash flow expectations, and a rise in cost of capital
expectations. The changes in expectations are justified as exposure to TAV affects operating
performance heterogeneously across industries. Lastly, we propose a methodology that firms
can use to disclose their future exposure according to climate projections, offering practical
guidance for policymakers.

The essence of the paper focuses on isolating the differential exposure of U.S.-based
firms to the two temperature shocks. To accomplish this, we formulate our metrics using
the maximum surface temperature data at a 1 by 1 degree grid level, sourced from Berkeley
Earth (BEST) (Rohde and Hausfather, 2020). We aggregate this data to calculate exposure

1ISSB standards – IFRS S1 and IFRS S2 – available "IFRS Sustainability Disclosure Standards", 2023.
ECB guidance is available "Towards climate-related statistical indicators", 2023.

2Donadelli et al. (2019) and Kotz et al. (2021) studying changes in variability; however, they primarily
focus on macro-economic outcomes.
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at the state level, as illustrated in Figure 2, which highlights the distinct spatial variation of
the two metrics.3 This setting enables us to test the differences between the two arguably
exogenous temperature shocks (see (Auffhammer et al., 2013); (Dell et al., 2014); (Pankratz
et al., 2023)) and their effects across time and space on firms that are part of Russell 3000.
The headquarters of these firms are matched to TA and TAV under the assumption that the
primary locus of operational activity is centered in that state. However, for geographically
dispersed firms, we employ a state count methodology as outlined in Garcia and Norli (2012).

It is unclear ex-ante which representation of changes in the distribution of tempera-
tures should affect asset prices. Under standard asset pricing assumptions, the regional and
idiosyncratic nature of temperature shocks should not be priced. However, recent evidence
from Kruttli et al. (2021) suggests that idiosyncratic hurricane shocks are indeed priced and
affect discount rates and cash flows, as predicted under the model of Merton et al. (1987).
Although using fundamentally different measurements of temperature exposure, Pankratz
et al. (2019) and Addoum et al. (2021) find a similar decrease in cashflows of firms affected
by extreme temperatures. In line with this theory, we hypothesize that the idiosyncratic and
exogenous shocks of TA and TAV should affect the returns of exposed firms.

We begin by implementing a geographic long-short portfolio strategy using the Russell
3000 firms to study the return effect caused by state-level exposure to each temperature
metric. A monthly strategy that goes long firms headquartered in states that are least
affected by TAV and short those most affected, produces an average value-weighted return
of 4.47% per year for the least exposed quartile when controlling for common factors. In
contrast, the strategy using TA yields insignificant factor-adjusted returns of 2.16% per
year for firms located in the least impacted states. The results become more pronounced
when narrowing the sample to industries like energy and utilities, as well as the consumer
discretionary and consumer staples sectors, especially when leveraging variation in TAV
over TA. These results underscore our primary contribution, equities react to changes in
the variability of temperature anomalies rather than to the average – a consistent finding
throughout the paper.

To gain a detailed understanding the impact of temperature anomalies on industry-
specific returns, we conduct monthly cross-sectional regressions that control for firm charac-
teristics. Our results reveal substantial heterogeneity across sectors, with negative relation-
ships between shifts in temperature variability and returns observed for the energy, consumer
staples, and consumer discretionary segments. However, we find positive and significant co-
efficients for TAV in the energy, utilities, consumer staples, and consumer discretionary
sectors. The energy and utility sectors are once again affected by temperature variability,
which reinforces the validity of our exercises. Shocks to monthly temperature anomalies, on
the other hand, are only economically consequential for the utilities sector. We also find that
our return patterns hold across various sub-periods, suggesting that the return response is
continual and that adaptation is either lacking or neglected.

The overarching results suggest that TAV is a salient physical risk for a large set of
sectors. However, these empirical results prompt the question of whether the observed return
reaction stems from heightened investor attention and a shift in climate beliefs or from actual

3While our focus is at the US state level, the metrics can be calculated for any region and various
periodicities such as quarterly or yearly.
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operational impacts. The clarity on investor attentiveness to climate shocks remains elusive.
For instance, Hong et al. (2020) reports inattention to droughts, while Choi et al. (2020) finds
the opposite for heatwaves.4 We endeavor to disentangle the two mechanisms by conducting
a series of exercises that extract evidence aligning with both perspectives.

A behavioral rationale for the observed return reaction posits that investors’ attention is
a limited resource (Van Nieuwerburgh and Veldkamp, 2010). This attention can be redirected
when unusual weather events occur, subsequently altering the equilibrium price of an asset.
However, given the regional nature of weather, temperature shocks would likely impact only
a select group individuals, making such shocks idiosyncratic and resulting in minimal price
impact (Alekseev et al., 2021). Contrary to this prevailing notion, our results align with
Kruttli et al. (2021), indicating that deviations in the variability of temperature anomalies
are linked to both localized and broader market attention to climate change risks, rather
than shifts in the average of temperature anomalies. Our interpretation is that, despite the
regional nature of the temperature anomaly shock, local attention is relayed to news agencies
like the Wall Street Journal and then disseminated to the broader investment community,
influencing prices.

To explore the attention channel at both the state and U.S. national levels, we aggre-
gate the temperature metrics accordingly. After obtaining the innovations of Google Search
Volume Index (SVI) data at the state level for the topics “Climate Change” and “Temper-
ature”, we determine whether investors react to localized temperature shocks. In doing so,
we identify a strongly significant relationship between TAV and both SVI topics, lending
credence to the attention mechanism. Utilizing the The Wall Street Journal (WSJ) news
index from Engle et al. (2020), which gauges overall U.S. media coverage of climate change
tailored for investors, we find a moderate relationship between TAV and unexpected news
in the index, but none for TA. Collectively, these results bolster the notion of a behavioral
mechanism where both local and broader investors adjust their perceptions regarding the
impacts of physical climate risks.

Next, to further validate the attention channel, we examine whether sell-side analysts
probe firms that experience temperature shocks during earnings calls to further verify the
attention channel. We utilize a measure of earnings call attention to physical risk developed
by Sautner et al. (2020) and relate it to our temperature metrics. We find a positive correla-
tion with all firms, especially in the utilities industry. However, their measure is swayed by
broader attention to climate change, as evidenced by its positive relationship with the WSJ
index. After controlling for the index, we observe that only elevated TAV is significantly and
positively associated with an unexpected surge in attention paid by analysts to affected firms.
These results underscore the significance of TAV for investors, suggesting that temperature
shocks act as a "wake-up call," prompting a shift in prices through the behavioral attention
channel.

We subsequently delve into the impact of changes in the distribution of temperature
anomalies on the financial performance of firms. In line with Brown et al. (2021), we measure
the annual performance of firms using their operating income and sales, normalized by their
assets, and regress these on a set of conventional firm controls and the time series of both

4Prior work to affect beliefs about aggregate climate risk (see, e.g., Egan & Mullin 2012, Deryugina 2013,
Joireman et al. 2010, Li et al. 2011, Fownes & Allred 2019, Sisco et al. 2017)
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temperature metrics. Our analysis reveals a negative correlation between TAV and cash flows
for industry, consumer, and energy sectors, with utilities showing non-significant positive cash
flows. A one standard-deviation surge in yearly TAV diminishes their return on assets by
1.37% of total assets across the entire sample. This effect is more pronounced for the consumer
discretionary and consumer staples sectors, where the impact reaches 3.35% of assets. On
closer inspection, we observe smaller effect sizes when examining the relationship between
TAV and sales. This suggests that heightened variability adversely influences both sales and
operating expenses for most firms.

Our findings carry practical implications for policymakers and firm managers, especially
in light of the mounting global emphasis on climate risk disclosure. The increasing awareness
of climate change and its potential impacts on businesses has necessitated the development of
robust metrics. In this context, organizations like the International Sustainability Standards
Board (ISSB) and the European Financial Reporting Advisory Group (EFRAG) have been
actively pursuing the development of metrics that encapsulate financial materiality. Their
goal is to pinpoint the most appropriate methods for qualifying and quantifying the financial
repercussions of climate risks. We illustrate the practical utility of TAV through examples
of measuring and reporting temperature risks. In the first exercise, we illustrate how com-
panies can leverage TAV to disclose their exposure to temperature risks. Such disclosures
not only enhance transparency but also inform financial markets and investors about the
company’s vulnerability to climate-induced temperature shocks. In the second exercise, we
demonstrate how TAV can act as a barometer to gauge the potential risks associated with
an investor’s portfolio. By evaluating the TAV of companies within their portfolio, investors
can make informed decisions, adjusting their portfolio away from firms negatively impacted
by temperature anomalies.

Lastly, we conduct a battery of robustness checks and extensions to validate our results.
We affirm the exogeneity of the temperature metrics using a spatio-temporal transition ma-
trix. Moreover, we establish that TAv, rather than TA, predominantly influences the prices
of weather derivatives from the Chicago Mercantile Exchange (CME) weather futures mar-
ket. We also determine that energy consumption reacts more to deviations in the variability
of temperature anomalies. We do this by associating it with unexpected state-level energy
demand in the US. The analysis yields positive significant coefficients for TAV on aggregate
energy demand, particularly in the residential and industrial sectors. Conversely, shifts in
temperature anomalies yield a significant positive coefficient only for the commercial sector,
which can be attributed to the sector’s consistent and steady energy demand. The collective
evidence compellingly indicates that fluctuations in temperature variability from its historical
average is a first-order factor in the closely linked energy and weather futures market.

Our study contributes to four main strands of the climate change financial literature:
(i) constructing salient physical climate risk measures (ii) identifying equity reactions to
climate shocks (iii) attributing them to an attention and investor expectation channel (iv)
and estimating financial damages from climate hazards. The TAV metric characterizes a
distinctive phenomenon of changes in the variability of temperature anomalies occurring due
to increasing global green house gas emissions. The generality of TAV means that we are
able to treat cold spells as equally harmful to economic activity as heatwaves. The majority
of research focus on heatwaves or defining abnormal temperatures as temperature extremes,
i.e., temperatures being above or below certain thresholds. For example, Addoum et al.
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(2020) construct exposure measures based on the idea of days exceeding a certain threshold,
e.g., above or below a predetermined percentile. Their findings suggest mostly insignificant
of abnormally high or low temperatures on firm sales with the exception of a positive impact
of low temperature on sales in the energy sector.

We also contribute to the literature by examining stock return reactions to climate
shocks. We build upon the temperature volatility study of Donadelli et al. (2017) in a
concrete manner: first, by developing a long–short strategy to explore investor reactions to
sub-national heterogeneity in temperature in the U.S. equity market. second, performing an
asset pricing factor analysis to examine the relationship between deviations in temperature
variability and U.S. stock returns; and third, directly validating the importance of deviations
in temperature variability in the energy consumption and weather futures market.

We add to existing body of research is the investigation of the impact of temperature
extremes on investor reactions and attention. Engle et al. (2020) builds the WSJ climate
news series to hedge against long-term climate risks. Choi et al. (2020) finds that local tem-
perature shocks can heighten investors’ attention, which in turn differentially affects returns
on a cross-section of stocks. Alekseev et al. (2021), with a similar argument, investigates
the effects of local temperature shocks, finding that mutual funds respond by shifting their
portfolio allocation, irrespective to the intensity of the heat shocks. We complement the ma-
jority of these findings, similarly concluding that investors do react to temperature swings.
Specifically, deviations in temperature variability lead either to direct attention to a local
shock, as in Choi et al. (2020) and Alekseev et al. (2021), or to indirect investor attention to
increased news coverage distributed more broadly. Critically, however, we discover that the
pricing reaction only occurs in response to a specific type of temperature shock. Furthermore,
we go a step further by disentangling attention from firm-level exposure to the risk.

Last but not least, our study contributes to the literature by identifying temperature
shocks and their impact on firm performance. Hong et al. (2020) investigates its effects on
the international food industry, Pankratz and Schiller (2021) and Addoum et al. (2021) firm
earnings and profits, and Schlenker and Taylor (2021) studies incorporation of temperature
into futures markets.

This paper is organized as follows. Section 2 details the data sourcesa nd explains our
data set construction procedure. In section 3, we describe the construction of the temperature
statistics TA and TAV . Section 4 delves into the influence of shocks in temperature on equity
returns. Section 5 differentiates the impact of TAV on investor attention Section 6 pinpoints
the direct effects of TAV and TA on firms. The last section illustrates the practical utility of
TAV through examples of measuring and reporting temperature risks. Section 9 concludes.

2 Data construction

2.1 Data sources

Our sample is constructed by merging data from several databases. We use the Berkeley
Earth Surface Temperatures to collect a gridded reconstruction of daily land surface air
temperature records. In addition, we extract daily maximum and minimum temperatures
from over 25,000 stations using the U.S. National Oceanic and Atmosphere Administration
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(NOAA) repository. For financial data, we turn to the Center for Research in Security Prices
(CRSP) files to gather stock returns and the Standard and Poor’s Compustat database for
financial information. We leverage Google Trends to collect data on the Google Search
Volume Index (SVI), which aids us in identifying days of heightened national and regional
interest in climate change and temperature-related topics. We cross-reference the Google
SVI data with the climate change news risk index from Engle et al. (2020) to distinguish
climate-related events that garnered attention from U.S. news outlets or were featured in
major newswires. Lastly, we use the Federal Reserve Economic Database, released by the
Federal Reserve Bank of St. Louis, to obtain data on population and gross domestic product.

2.2 Temperature

We obtain daily temperature data from the Berkeley Earth Surface Temperatures (BEST),
which are produced by Berkeley Earth. We consider data starting from Jan 1, 1950 and
ending on Dec 31, 2019. The BEST data are organized into a grid format, with each grid cell
representing a 1-degree latitude by 1-degree longitude area. One of the key strengths of the
BEST data set is its use of a large number of land stations. With data from over 40,000 sta-
tions, BEST significantly surpasses alternative data sets, which typically use around 10,000
stations. This extensive network of stations enhances the accuracy of the BEST data set,
particularly when it comes to identifying record-setting daily temperatures.5 BEST utilizes a
spatial interpolation technique to ensure comprehensive and extensive spatial coverage glob-
ally, from 1950 to the present day. This means that the dataset provides a continuous and
detailed record of temperature changes over several decades,6 covering the entire globe. This
is of paramount importance when examining the impact of temperature on businesses oper-
ating in different countries. While the primary focus of this paper’s analysis is on the United
States, the methodologies and metrics used can be applied to other countries or adjusted
to different geographic scales. The flexibility of the BEST dataset, with its comprehensive
global coverage and detailed temperature records, allows for such adaptability and, crucially,
consistent comparability of the effect of temperature across different countries. This con-
sistency aligns seamlessly with the objectives of the International Sustainability Standards
Board (ISSB), which seeks standardized and comparable sustainability reporting across ju-
risdictions. Leveraging the BEST dataset can thus aid firms in meeting the rigorous and
harmonized reporting standards advocated by the ISSB, ensuring that temperature-related
disclosures are both accurate and universally interpretable.

In our base formulation, we attribute equal weight to each grid within the state borders
when assembling state-level temperature data. However, we recognize that the significance
of temperature exposure in each state can differ based on the economic activities occurring in
that particular state. Therefore, to assemble U.S.-level temperature data starting from state-

5In other words, the more stations contributing data, the more accurate the assessment of whether a given
day’s temperature was record-setting. This is because a larger number of stations increases the likelihood
that the data set includes a station near the location of interest, reducing the need for interpolation between
distant stations and thus improving the accuracy of the data.

6Such a technique is crucial for accurately tracking the progression of temperature extremes over the past
hundred years. For a more technical exploration of this topic, we direct readers to Rohde et al. (2013) and
Rohde and Hausfather (2020).
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level data we consider state-level economies and, for robustness, populations when assigning
weights to temperature values. The rationale for this approach is that these elements act
as proxies for a state’s exposure to temperature, as discussed in CIT. Specifically, we use
annual data on the economies and populations of U.S. states, sourced from the Federal
Reserve Economic Database, released by the Federal Reserve Bank of St. Louis. State-level
population data can be retrieved using the ’POP’ code, which delivers annual population
values from 1950 onwards. To align with the temperature datasets, we interpolate the annual
frequency of the population data to produce monthly or daily series. Data on Gross Domestic
Product (GDP) can be accessed using the ’RQGSP’ code, which yields quarterly real gross
product data for each state. We implement a similar interpolation technique to this data to
generate a monthly or daily series.

2.3 Stock and company information

We gather stock returns for the Russell 3000, an index that monitors the performance of the
3,000 largest U.S. companies, which collectively represent about 97% of the U.S. equity mar-
ket that’s available for investment. Information on the financial and accounting performance
of the constituents of the Russell 3000, along with their headquarter locations, are sourced
from Refinitiv – Thomson Reuters. Furthermore, these companies are categorized into their
respective sectors using the Global Industry Classification Standard (GICS). Table 1 presents
summary statistics of various financial parameters, including capitalization, book-to-market
ratio, return on equity, leverage, capital expenditure, and the value of long-term assets.

2.4 Firm geographic concentration

One difficulty in capturing the effects of temperature on firms is that their headquarters may
not represent the firm’s center of operations. To adjust our strategy for firm level geographic
dispersion, we use the methodology outlined in Garcia and Norli (2012) and Bernile et al.
(2015) who develop a 10-K-based measure of firm local exposure. We parse the 10-K filings
of all Russell-3000 firms for each year to identify the number of times the U.S. states and
Washington DC are mentioned in sections 1A, 2, 6, and 7. The firm-headquarter citation
count is calculated by dividing the total number of mentions of the headquartered state by
the total mentions of all U.S. states and Washington DC. Finally, we average this for each
firm to obtain a metric which we define as the 10-K measure of state operational dispersion.
Akin to Bernile et al. (2015), we assert that our metric is a reasonable proxy to capture
geographical variation in firm’s activities.

Figure 5 shows the distribution of operational dispersion with values closer to one
meaning that firm activity is in the home state. The dispersion metric is right skewed,
showing that the majority of firm activity in the Russel-3000 is scattered in states other than
their headquarters. While the prior literature provides no theoretical motive for a cutoff for
the metric, we remove the bottom quartile of firms using the operational dispersion (14.13%)
which leaves 2,500 firms remaining in the sample. This limit reduces the number of firms
that are least geographically concentrated in the U.S.

An additional issue is that the number of firm headquarters is unevenly and heteroge-
nously distributed across states. Since our long-short strategy hinges on sorting states based
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on their exposure to temperature, states with minimal headquartered firms could skew the
‘alpha’ values in the portfolio. Therefore, we remove 10 states with the fewest headquar-
tered firms: Alaska, Hawaii, Maine, Montana, New Mexico, Rhode Island, North Dakota,
Vermont, South Dakota, and West Virginia. Each of these states have fewer than 14 firms
headquartered in their state. Together with the operational dispersion adjustment, there are
2400 firms in our sample.

2.5 Other data

Attention indices We draw from three different data sources that measure market atten-
tion to climate risks for our empirical tests. We begin by extracting internet search activity
data from Google Trends, which offers a Search Volume Index (SVI) for the search topics
"climate change" and "climate variability and change." We download the quarterly SVI for
each of the 50 U.S. states from 2004 (the inception of Google Trends) through to 2021.

To represent firm-specific attention paid by analysts, we adopt the physical climate
change exposure index developed by Sautner et al. (2023). Their measure captures the
proportion of bigrams related to physical climate change (e.g., "natural hazard" and "global
warm") that occur out of all bigrams in the transcripts of earnings conference calls. We
obtain the yearly frequency of their measure from 2005 to 2019 and match it to the Russell
3000 firms in our sample.

Additionally, we use the Wall Street Journal climate change news index from Engle
et al. (2020) to proxy for US market-wide investor attention to the physical and transition
risks related to climate change. The series is based on the assumption that any news about
climate change is bad news. The news index is broken down by month, covering July 2008
through June 2017. When using this index, our sample is truncated to reflect this shortened
time period.

Energy demand We gather data spanning from September 1990 to December 2020 on
energy consumption. We source time-series data on energy demand for all 50 U.S. states at
a monthly frequency from the U.S. Energy Information Administration. In the U.S., energy
consumption is classified into four end-use sectors. These include residential (homes and
apartments), commercial (offices, malls, stores, schools, hospitals, hotels, warehouses, and
public assembly), industrial (facilities and equipment used for manufacturing, agriculture,
mining, and construction), and transport. By analyzing energy consumption data across
these sectors, we can understand how temperature impacts energy demand in different areas
of the economy.

Weather derivatives We obtain daily futures prices (end of day) for temperature deriva-
tives traded on the Chicago Mercantile Exchange (CME) from Bloomberg, covering the
period from 2005 to 2020. These contracts provide insurance to buyers against extreme heat
or cold during a specified time period. The two primary temperature instruments are Heating
Degree Day (HDD) contracts and Cooling Degree Day (CDD) contracts.7 These contracts

7An HDD contract buyer receives payments for cold days, defined as days when the average temperature
falls below 65°F. On the other hand, a CDD contract buyer receives payments for hot days, defined as days
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are available for eight geographically diverse cities across the U.S. and are based on the ob-
served temperature at a specific weather station near the contract city for a particular period.
The cities we’ve selected for our study, as considered in Diebold and Rudebusch (2019) and
Schlenker and Taylor (2021), are Atlanta (ATL), Chicago (ORD), Cincinnati (CVG), Dal-
las Fort Worth (DFW), Las Vegas (LAS), Minneapolis St Paul (MSP), New York (LGA),
and Portland (PDX). Table 13 indicates which of the cities in our larger city sample have
temperature derivatives available.

Consumer transactions To measure consumer spending in various geographic areas in
the US, we acquire SpendTrend data from Bloomberg. The data captures total retail monthly
transactions in nine major metropolitan statistical areas from May 2016 to December 2019.
The nine metropolitan areas include: Washington, Atlanta, Greater Boston, Chicago, Dallas-
Fort Worth, Greater Houston, Greater Los Angeles, San Francisco, Miami, New York, and
Philadelphia-Camden-Wilmington. We average our temperature metrics across various states
to match the metropolitan retail data for Washington and Chicago. Specifically, we average
temperatures for Virginia and Maryland to correspond to the Washington metropolitan area.
For the Chicago metropolitan area, we average the temperature metrics across Illinois and
Indiana.

3 Temperature variability
Temperature has a significant impact on economic activities at the macro level, as evidenced
by numerous studies (Dell et al. (2012), Burke et al. (2015), Kalkuhl and Wenz (2020)).
These effects are not limited to any single sector but span across various aspects of the
economy and society. Empirical research has demonstrated the influence of temperature
anomalies, i.e. deviations of observed temperatures from the historical averages, on a wide
array of observable outcomes (Carleton and Hsiang (2016)). For example, unusually hot
and unusually cold temperatures can have a significant impact on agricultural productivity
(Schlenker et al. (2006), Wheeler et al. (2000), and Ceglar et al. (2016)). Temperature
anomalies, particularly those resulting in unusually high temperatures, can lead to a decrease
in individual productivity, especially in tasks that expose workers to heat (Cachon et al.
(2012) and Somanathan et al. (2021)). Extreme temperature events, whether excessively
hot or cold, can lead to health complications such as heat stroke. These health issues can
subsequently result in a decrease in the number of hours worked and a reduction in the
time spent on outdoor leisure activities (Graff Zivin and Neidell (2014), Behrer and Park,
2019). Moreover, these extreme temperatures can have serious implications for human health
and can even increase mortality rates (Deschenes and Greenstone, 2011, Zanobetti et al.,
2011). In the financial literature, empirical research has examined the effects of extreme
temperatures on firm performance outcomes and stock valuations. Studies suggest that
heightened exposure to extreme temperatures tends to diminish firms’ revenues and operating
income (Pankratz et al. (2023)). However, it appears that productivity growth (Addoum et al.
(2020)) remains largely unaffected, and both analysts and investors typically do not react
significantly to extreme temperature events (Addoum et al. 2021).

when the average temperature rises above 65°F.
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The ultimate influence of temperature on economic activities and financial results hinges
on the effects of those temperature anomalies that become comparatively more (or less) fre-
quent as a result of temperature variability.8 Essentially, it’s the change in the distribution of
these temperature anomalies, and ultimately the likelihood of temperature extremes, rather
than the average temperature anomaly itself, that matters. In fact, there is already evidence
that variability of daily temperature from seasonal and historical expectations has significant
impacts on crop yields (Mendelsohn et al. (2007)), human health (Hovdahl (2020)), sales and
operational costs (Bertrand and Parnaudeau (2015)), consumer spending (Starr (2000)), and
investor expectations (Makridis and Schloetzer (2021)). Temperature variability can have
profound effects on businesses too. Firms operating in sectors sensitive to temperature may
see their operational efficiency and profitability directly affected by temperature variability.
For instance, more frequent warm or cold temperatures can disrupt production schedules, in-
crease operational costs, and affect the demand for products and services. These operational
disruptions and increase operational costs can, in turn, impact firm performance outcomes,
leading to fluctuations in stock values as investors adjust their expectations based on the
firm’s ability to manage these climate-related risks. In this study, we explore the relationship
between temperature anomalies, the variability in temperature anomalies, and investors’ re-
actions as reflected in stock prices. We aim to understand how these temperature-related
factors can materially affect a firm’s performance and, consequently, influence investor sen-
timent and decision-making.

3.1 Temperature anomaly and temperature anomaly variability

Inspired by Kotz et al. (2021) and Linsenmeier (2022), we define day-to-day temperature
anomalies for a given location as deviations of the observed temperature from its historical
average. Our approach to constructing the temperature anomaly measure subtly but signifi-
cantly diverges from the one used in Kotz et al. (2021) and Linsenmeier (2022). Our version
captures not only the inherent, contemporaneous variability but also some aspects of the
underlying warming trend.9 However, we account for the warming trend in a subsequent
step. Formally, we first calculate

TAs,[d,m,y] = (Ts,[d,m,y] − T
1960−2005

s,[d,m] ). (1)

In the given formula, TAs,[d,m,y] represents our measure of day-to-day temperature anomaly
on a specific day d, month m, year y and location s, calculated from the observed maximum
temperature Ts,[d,m,y]. The term T

1960−2005

s,[d,m] denotes the historical average temperature at the
same location s and on the same day d and month m, over the period 1960–2005.10 This

8While temperature extremes are indeed anomalies, not all temperature anomalies qualify as extremes.
An anomaly can occur when a temperature is only slightly higher or lower than the average, but it won’t be
deemed an extreme unless it ranks among the very hottest or coldest temperatures ever recorded. Crucially,
an increase in the frequency and intensity of temperature anomalies can shift the range of temperatures we
experience, which in turn leads to more frequent occurrences of temperature extremes.

9It’s important to note that while Kotz et al. (2021) and Linsenmeier (2022) focus on the variability of
temperature, our emphasis is on the variability temperature anomalies.

10While T
1960−2005

s,[d,m] is a constant over the year, and does not affect the time series, it does however vary
across location s and will affect the cross-sectional properties of TAs,[d,m,y].
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historical average is calculated using a smoothing window of 5 days around day d. Thus the
historical average daily temperature is calculated as the average of the temperatures on a
specific day, as well as the two days before and the two days after. This approach helps to
smooth out any short-term fluctuations in temperature and provides a more stable estimate
of the typical temperature for that day and location.

To compare temperature variables with financial data, an assessment must be made at
the monthly level. The location-specific temperature anomaly is therefore averaged across
the days of a given month to yield a monthly measure of day-to-day temperature anomaly:

TAs,[m,y] =
1

D[m,y]

D[m,y]∑
d=1

TAs,[d,m,y], (2)

where D[m,y] is the number of days in month m of year y. For convenience, we will henceforth
relabel TA := TAs,[m,y].

In line with Katz and Brown (1992) and Donadelli et al. (2020), we examine changes in
the distribution of temperature anomalies by focusing on shifts in their variability. Specifi-
cally, we track changes in the dispersion of temperature anomalies over time. This approach
allows us to capture changes in the likelihood of extreme temperature events. In the context of
climate change risk reporting, understanding these fluctuations is of paramount importance
as they can signal potential shifts in the frequency and intensity of extreme temperature
events. To facilitate this, we employ a Temperature Anomaly Variability Index (TAV), de-
fined as the difference between the intra-month variability of temperature anomalies and a
benchmark variability level of temperature anomalies. This benchmark is represented by the
historical average intra-month variability of temperature anomalies, calculated over the pe-
riod from 1960 to 2005. The intra-month variability of temperature anomalies is calculated
as follows:

σ(TAs,[m,y]) =
1

D[m,y]

√√√√Dm∑
d=1

(TAs,[d,m,y] − TAs,[m,y])2, (3)

In this equation, σ(TAs,[m,y]) represents the standard deviation of the temperature anomalies
for a given location s in a specific month m and year y. This value measures the extent to
which the temperature anomalies deviate from their average value for that month. Equipped
with σ(TAs,[m,y]), we then calculate the Temperature Anomaly Variability Index:

TAVs,[m,y] = σ(TAs,[m,y])− σ(TAs,[m])
1960−2005. (4)

TAV represents how much the temperature anomalies variability fluctuates around its his-
torical average. If the variability increases, resulting in a positive TAV, it implies that
temperature anomalies are fluctuating more widely than usual, potentially leading to more
frequent and intense periods of extreme heat or cold. Conversely, if the variability decreases,
yielding a negative TAV suggests that temperature anomalies are more stable and less likely
to reach extreme levels.

We now introduce spatial aggregation of the temperature data and illustrate our measures of
temperature anomaly and temperature anomaly variability by examining temperature data
for two states: New Mexico and Arizona.
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Beginning with the grid-level data from BEST, which assigns a temperature field at a
1-degree resolution within U.S. land borders, we calculate a state-aggregated temperature as
follows:

Ts,[d,m,y] =
Ns∑
i=1

wi · Ti,[d,m,y], (5)

where Ti,[d,m,y] represents the maximum temperature for grid cell i on day d, month m, and
year y. Ns is the number of grid cells that at least partially fall within state s. wi is the
weight associated with the grid cell. In the following analysis, we assign equal weight to
the grid cells by setting the weights wi equal to 1/Ns.

11 Essentially, Ts,[d,m,y] is an equally
weighted average of the temperature assigned to each grid cell in state s. In Appendix B,
we discuss alternative aggregation methods. For instance, in the case of aggregation by
population, the weight represents the proportion of the population within that grid cell.
This spatial aggregation enables us to derive temperature anomaly TA and temperature
anomaly variability TAV for each state s in the U.S., as outlined in expressions (1) and (4).

Figure 3 depicts the state-level temperature across the U.S. for September 2015. Panel
A presents the state-level temperature anomaly TA, while Panel B showcases the state-level
temperature anomaly variability TAV .

To elucidate the distinctions between the measures of temperature anomaly TA and
temperature anomaly variability TAV , we examine the monthly TA and TAV for two distinct
states, New Mexico and Arizona, in the year 2017, as depicted in Figure 4. The left panel
showcases the TA, as computed in expression (1), for the State of New Mexico (blue color)
and the State of Arizona (yellow color). The bars illustrate the divergence of the monthly
temperature from its historical average for the year 2017, represented by the horizontal line
at zero. Bars above the line signify that the temperature exceeded the average, while bars
below the line indicate that the temperature fell short of the average. Conversely, the right
panel presents the TAV , as computed in expression (4), for the State of New Mexico (blue
color) and the State of Arizona (yellow color). Despite both states experiencing comparable
levels of temperature anomalies in the year 2017, Arizona is marked by greater variability in
temperature anomalies. This implies that temperature anomalies in Arizona are fluctuating
more broadly than usual, potentially leading to more frequent and severe periods of extreme
heat or cold.

This comparison underscores the possibility of observing more adverse temperature
effects in states that experience the same monthly temperature anomaly but exhibit different
levels of temperature anomaly variability.

4 Equity returns in response to temperature shocks

4.1 Exposure using a long-short portfolio

In this section, we examine the contemporaneous effect of temperature anomalies T̃A and
deviations in temperature variability TAV on the equity returns U.S. headquartered firms

11Our method of constructing sub-national temperature measures aligns with the approach used in other
studies, such as that by Burke and Tanutama (2019).
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in the Russell 3000. Our empirical prediction is that temperature shocks will be associated
with a collective reaction from investors (Choi et al., 2020) as well as materially affect a
firm’s performance (Pankratz et al., 2023), leading to negative returns for those firms most
affected.

We construct monthly long-short (L/S) portfolios by sorting the exposure of firms’ op-
erational footprints to either temperature measures allowing us to capture the heterogeneity
in temperature across the U.S. Specifically, we long firms with operational footprints in states
with the least exposure to T̃A and TAV , and short firms with operational footprints with
most exposure to either metric. For each temperature metric, we split 40 states into four
quartiles predicated on the realization of TA and TAV in each month, t, from February 2006
to December 2019.12 Each monthly observation for the long portfolio constructed with TAV
consists of the ten states that deviated least from their 1960–2005 temperature variability
and vice verse for the long portfolio. The short portfolio constructed with TA consists of the
states that experienced hotter than normal temperatures in comparison to the states in the
long portfolio that sustained colder conditions. After sorting states into quartiles of exposure,
the stocks of firms with operational footprints near their headquartered state are partitioned
into each quartile at a monthly frequency in order to calculate the value-weighted return of
the portfolios. Finally, we subtract the returns from the least exposed sample (first quartile)
by the returns of the most exposed (fourth quartile) yielding 167 observations of monthly
L/S returns for each temperature metric.

To fix ideas, at time t, the value-weighted return, R, of a quartile portfolio p =
{1, 2, 3, 4} is:

Rpt =

npt−1∑
i=1

xit−1rit. (6)

where rit is the stock return of firm i-th at month t, and npt−1 representing the number of
firms in the quartile portfolio p at month t− 1. xit−1 represents the market capitalization of
firm i divided by the total market capitalization of portfolio p at month t− 1.

The central message of our paper can be seen in Figure 6 which plots the long minus
short returns of portfolios constructed using T̃A, denoted by the solid line, and TAV repre-
sented by the dashed line. Firms whose operations are unaffected by increased temperature
variability enjoy greater cumulative abnormal returns than those with affected operations
over the entirety of the sample period. Firm operational footprint, in this case, is defined by
the centralization measure in Garcia and Norli (2012) and detailed in Section

We show this relation in numerical form in the first column of Table 2 which reports the
mean excess returns net of the U.S. risk-free rate. We also report portfolio alphas adjusted
using the Fama-French three-factor model (Fama and French (1993)), which controls for the
market factor as well as size and book-to-market factors; the Fama-French-Carhart (Carhart
(1997)) four-factor model, which includes Carhart’s momentum factor and a fifth liquidity
factor (Pástor and Stambaugh, 2003). The middle three quintiles are grouped together by
equal-weighting their respective returns.

12We remove Alaska, Hawaii, Maine, Montana, New Mexico, Rhode Island, North Dakota, South Dakota,
West Virginia, and Vermont from the sample as there only a few firms headquartered in these states. Including
these unpopulated states leads to an unbalanced number of firms in each portfolio.
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The first column of Table 2 reports the mean value-weighted returns net of the U.S. risk-
free rate. We also report portfolio alphas adjusted using the Fama-French three-factor model
(Fama and French (1993)), which controls for the market factor as well as size and book-
to-market factors; and the Fama-French-Carhart (Carhart (1997)) four-factor model, which
includes Carhart’s momentum factor. The results reported in the first row of each panel,
represent the monthly realized abnormal returns of firms affected by colder temperatures
in Panel A and lower volatility of temperature anomalies in panel B. The returns for the
middle two quartiles are grouped together by equal-weighting their respective returns and
are presented in the second rows. The third rows denote the returns from firms affected
by warmer temperatures in Panel A and greater TAV in panel B. Finally, the fourth row
presents the realized returns produced from subtracting the portfolio returns of the least
affected firms from the most affected.

The portfolio comprising of the least affected firms to TAV in the first row of Panel B,
yields a statistically significant abnormal performance of 45 basis points per month or 5.41%
per annum (t-stat=2.55) when adjusted with five factors. In comparison, the portfolio if firms
that experienced colder than normal temperatures produces a return of 33 basis points per
month or 4.03% per annum (t-stat=1.77). The results suggest that the equity market reacts
to temperature information and, specifically, that it is pricing the deviations in temperature
variability to a greater extent than simply the temperature anomaly. Here, the market is
actively rewarding a stable climate over a volatile one and a cooler region over a hotter one.

To contextualize the findings in terms of the literature, our results are in accordance
with Addoum et al. (2020) and Addoum et al. (2021) in that there is no market reaction
to heat stress as represented by the fourth portfolio quartile in Panel A of Table 2. This
challenges the findings of Acharya et al. (2022), Gostlow (2021), and Pankratz et al. (2023)
who find a significant negative realized return of firms affected by heat stress although using
varied definitions of the term. Our results using TAV are more consistent with the findings
of Donadelli et al. (2019) in that there adverse effects of deviations in temperature volatility
on average across U.S. based firms as denoted by negative coefficients the third row of Panel
B. The average impact of elevated TAV is non-significant because the temperature shock has
an heterogenous effect across industries as we describe in the next section. Nonetheless, the
economically large coefficients for the portfolio of firms least affected by TAV indicates that
the market prefers an invariable environment.

A long-short portfolio strategy using TAV produces returns of 5.54% per annum (t-
stat=1.65) in comparison to 1.11% per annum (t-stat=0.37) when exploiting TA. The posi-
tive realized performance of the strategy when using TAV over TA suggests that the market
has a greater reaction to volatility than deviations to the average. Furthermore, the relation
appears to hold across the sample period as illustrated in Figure 6 indicating that either
market participants buy unaffected firms and sell the inverse when faced with shocks to tem-
perature variability or that firm performance is tied to TAV . Our empirical exercises test
these mechanisms and find evidence of both. Furthermore, we later show a method to con-
struct a portfolio that utilizes the regional heterogeneity of TAV to protect against downside
risk.

We perform a battery of robustness checks for our long-short portfolio analysis. First,
we show that conditioning on operational area is important. We find that the full sample
of the least affected firms to TAV , which includes those with footprints across the U.S.,
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enjoy a more muted but significant annual abnormal return of 4.35% – a difference of a 119
basis points. Second, some states may be systematically exposed to shocks to temperature
anomalies or to deviations in temperature variability, forcing some states and firms to be
consistently in a certain quartile. Chronic exposure to abnormal temperatures could result
in lower returns across the board for firms headquartered in these states. These firms could
conceivably be less productive if the state in which they are headquartered is subjected to
continual temperature shocks. After constructing a monthly state transition matrix, we show
that removing these few states leave the general results unchanged. Third, we consider the
absolute value of TA which would treat any deviation from the average temperature as a
shock, and thus equally weight abnormally cooler or warmer states. Our findings suggest
again that the abnormal returns are greater for the firms in stable environments with no
significant effect for those most affected.

Overall, the results from this initial asset pricing test is to show that TAV is a sig-
nificant factor for the returns of firms that are affected over an above TA. We expect our
methodology to underestimate the true stock price reaction from temperature shocks due to
data limitations. Using granular data on exact firm operations spatially overlaid with TAV
would likely lead to greater adjusted returns using this trading strategy.

4.2 Temperature exposure in the cross-section

To examine the equity reaction of affected firms and sectors in more depth, we use a firm
characteristic-based asset pricing approach akin to Daniel and Titman (1997) to take advan-
tage of the cross-sectional variation of the firms in the Russell 3000. In comparison to the
long-short portfolio methodology, this approach allows us to examine the effects of temper-
ature shocks at the industry level by using time and firm fixed effects. We find that return
reactions vary considerably across industries when considering both temperature anomalies
and deviations in temperature variability.

We consider the effect of the two temperature metrics, TA and TAV , on the stock
returns of firms in the: industrial, energy, health, information technology, utilities, consumer
staples, consumer discretionary, materials, financial, and commercial sectors. We run the
estimate the following regressions that captures the impact of temperature shocks on stock
returns of firms:

ri,t,s = α + βT ∗ Tt,s + β1Ci,t−1 + φt + ηi + εi,t (7)

where ri,t,s measures the return of firm i in month t and headquartered in state s. T is a
generic term that can stand in for either the deviation of temperature from its historical
average (TA), or the deviation of daily temperature variability from its historical mean
(TAV ). We use the following vector of firm-level controls Cin our cross-sectional regressions:
LOGSIZEi,q, given by the natural logarithm of firm i’s market capitalization (price times
shares outstanding) at the end of each quarter q; B/Mi,t, which is firm i’s book value divided
by its yearly market cap; ROEi,t, which is given by the ratio of firm i’s net yearly income
divided by the value of its equity; LEV ERAGE, which is the ratio of debt to book value of
assets; capital expenditures INV EST/A, measured as the firm’s yearly capital expenditures
divided by the book value of its assets; LOGPPE, which is given by the natural logarithm
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of the firm’s property, plant, and equipment at the end of year t; MOMi,t, which in turn is
given by the average of returns on stock i, for the 12 months up to and including month t−1.
To allow for systematic differences in correlations across firms and over time, we include firms
fixed effects ηt and year–month fixed effects φt. In this regard, our identification comes from
states’ variation in a given month. We cluster standard errors at the firm and year levels,
which allows us to account for any serial correlation in the residuals and to capture the fact
that some control variables are measured at an annual frequency. Our sample of firms are
selected based on our metric of “centralization” developed in Section 2.4.

The results of the regressions for each Global Industry Classification Standard (GICS)
sector are presented in Table 3 separated by TA in Panel A and TAV in Panel B. For all sec-
tors except utilities (electric utilities; gas utilities; and multi-utilities), we find economically
and statistically insignificant estimates associated with exposure to temperature deviations.
Our findings suggest that exposure to warmer or colder than expected months does not exert
a substantial positive or negative impact on these industries. Utilities are a special case
though, because they are tasked with providing enough energy over time as well as meet-
ing instantaneous electricity demand, while juggling the costs associated with grid balancing
and a continuous expansion of non-dispatchable renewable generation. As such, deviations
in temperature require utilities to invest more in emergency measures, such as increasing
capacity and expanding demand–response investments to mitigate the effects of unexpected
changes in daily temperatures. Accordingly, our analysis reflects that the effect of abnormal
temperatures on utilities is economically important. The estimate indicates that deviations of
the daily temperature from the historical mean are associated with a 10.04 percentage-point
decrease in utilities’ stock returns, and that this effect is statistically significant.

In Panel B, we examine the effect of changes in the distribution of temperature by
considering a deviation of daily temperature variability from its historical mean in a given
month. As will become clear later, isolating the effect of changes in temperature distribution
is decisive for understanding the temperature–stock relationship, and for qualifying some of
the findings in previous studies that explicitly consider temperature extremes. Crucially,
and in contrast to our estimates for the deviations in (average) temperature, we find that
deviations in temperature variability significantly affect energy (oil, gas and consumable fuels;
energy equipment), utilities, consumer staples (beverages, food products and tobacco; food
and staples retailing; household and personal products) and consumer discretionary services
(leisure products; textiles, apparel and luxury goods; hotels and restaurants; beverages;
automobiles; and specialty retail).

In Table 4 we rerun the yearly stock return regression by splitting our sample into three
time periods, illustrating the robustness of our findings across the following sub-periods:
2005–2009, 2010–2014, 2015–2020. We focus on a small group of sectors that display some
interesting patterns: energy, consumer staples, and health care. The first two have significant
exposure to TAV over the sample period 2005–2020, see Table 3 Panel B. Table 4 provides
the estimates for TA and TAV for these three sectors. We report the results for all other
control variables in the Appendix (B). Notably, the effect of TA remains insignificant in each
sub-period, confirming the findings over the longer sample period in Table 3. Over time,
the estimates of the effect of TAV on the energy sector decrease and then increase, and
the estimates are virtually identical for consumer staples. There is no effect of TAV on the
health care sector. These results confirm that exposure to temperature varies over time as
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the distribution of temperature and temperature variability changes over time (Lewis and
King (2017), Alessandri and Mumtaz (2021)).

Several channels may be at work to explain the negative impact of deviations in temper-
ature variability on temperature-sensitive industries (Graff Zivin and Neidell (2014), Addoum
et al. (2020), Addoum et al. (2021)).13 Our findings are consistent with the consumer de-
mand and labor productivity channels ( Starr (2000); Graff Zivin and Neidell (2014)). Recall
that TAV offers a general characterization of the unconditional probability of temperature
extremes and, crucially, allows us to (i) simultaneously treat cold snaps and heatwaves as
equally detrimental to economic activity, and (ii) capture day-to-day temperature swings
between hot and cold. Using this measure, then, we find that many consumer-related sec-
tors, including energy, are affected by changes in temperature variability. For example, large
temperature swings can make shopping more or less difficult. Cold snaps and heatwaves can
shift consumer demand patterns and may adversely impact what Starr (2000) calls "house-
holds’ shopping productivity". Starr-McCluer provides empirical evidence consistent with
these ideas using sector-level output data. This is also observable when considering macroe-
conomic output: Colacito et al. (2019) document that extreme heat in summer and autumn
months affect U.S. GDP growth rates.

The results in Panels A and B demonstrate the effect of temperature anomaly variabil-
ity over and above the temperature anomalies highlighting varied investor reaction across
industries. Deviation in temperature variability represents a more salient measure of the ef-
fects of temperature on equities than temperature anomalies alone. Our measure is therefore
a meaningful indicator of physical risk, which has material consequences for the stock price
of firms.

5 Attention to temperature shocks
Our prior analysis strongly suggests that exposure to TAV has serious implications for firm
stock prices and investors; however, we are agnostic as to the exact mechanism that dictates
the price. Theoretically, there are two vectors at play. The first channel is investors’ beliefs
about companies that are exposed to temperature volatility. Heightened temperature vari-
ability acts as a "wake-up call" for investors, drawing attention to the risks of climate change,
changing demand and simultaneously moving the equilibrium stock price of the exposed firm.
The second, more direct channel, is the tangible, physical realization of the temperature shock
on the firm’s financial performance (Pankratz et al., 2023). We test the first channel in this
section and provide robust evidence that changes in temperature variability have a significant
effect on the attention paid by retail and institutional investors.

5.1 Regional attention

To test the first channel, we begin by estimating the relationship between innovations in
regional attention indices and TAV and TA. We represent local attention by gathering

13These papers examine various channels through which temperature affects economic output: manufac-
turing and labor productivity are sensitive to high temperatures, destruction of capital may occur at extreme
temperatures, and consumer demand tends to drop, coupled with a decreased total labor supply.
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state-level Google SVI data on the topics "Climate Change" and "Climate Variability and
Change", which should encompass reactions from retail investors and, to a lesser extent, from
institutional investors (Da et al. (2011)). Each series gauges the level of interest in a particular
topic by calculating the proportion of Google searches on the topic to all searches within a
specific state—what Google refers to as a normalized value. The score for the state with the
greatest normalized value in the topic is indexed to 100. In comparison to this state, the
remaining states are indexed proportionally between 1-100 based on their normalized values
of the topic of interest.

Investors should only react to unexpected attention, thus we use the residuals from an
autoregressive model with lag one for the state-level indices. Innovations in attention are
crucial, as expected attention paid by investors regarding climate change should not move
the equilibrium prices of assets.14 Investors should react to unexpected temperature swings
by selling the exposed firm accordingly.

To test the relationship between unexpected changes in climate change attention and
temperature volatility, we regress innovations indices on TAV and TA along with various
fixed effects:

εAttentionIndex,s,t = α + βT ∗ TAVs,t + βD ∗ TAs,t + ρt + γs + εs,t. (8)

where the dependent variable is the AR(1) innovations of a specified Google search topic in
a particular state, s. ρt and γs represent time and state fixed effects, respectively, and are
included in the model when needed. All models include standard errors that are clustered by
state to account for serial correlation of the error term within the state. Clustering, in this
case, is performed at the level of treatment, which is at the state level.

Table 5 reports the results of the U.S. state-level regressions providing evidence that
βT is positive and significantly different from zero. The coefficients of TAV in columns 1 and
4 are at least significant at the 5% level, indicating a contemporaneous relationship between
shifts to temperature volatility and Google search interest for the topics "Climate Change"
and "Climate Variability and Change". When TAV increases by one standard deviation
(0.48), there is an associated increase of 0.37 in unexpected Google searches for the topic,
"Climate Change", for the most saturated model in column (3). In this model, we use state
and time fixed effects to control for omitted variables that are constant either over time
or across states. In panel (b), the low r-squared values across columns suggest that the
topic, "Climate Variability and Change", is more difficult to explain than its counterpart.
Nonetheless, we show that TAV is significantly associated with the topic when using variation
within states, i.e., the results presented in column (5). However, adding both year and quarter
fixed effects cuts the coefficient by more than half, likely due to the variation captured by
additional fixed effects.

The second row of Table 5 presents the estimated values of βD, the coefficient on TA.
In the most saturated specifications of Table 5, i.e., columns (3) and (6), we show that
TA is not significantly associated with innovations in either index. This result suggests
that deviations to the first moment of temperature anomalies is not a meaningful driver
of state-level attention. The more interesting finding is the negative relationship between

14An investor’s trading actions are ‘conditioned’ on their expectations of future climate shocks. However,
unexpected shocks that are observed by investors may lead them to update their investments.
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TA and attention across all specifications, denoting that warmer temperature anomalies
decrease the intensity of searches for either search topic. This relationship implies the opposite
as well—colder anomalies are associated with greater attention paid by local residents or
investors. Simply put, these results suggest that colder rather than warmer temperatures
shift unexpected investor attention, indicating that warmer temperatures are expected and
therefore are not related to greater unexpected attention to climate change.

At face value, the findings that TA fails to shift unexpected attention conflict with the
results of Deryugina (2013) who show that warmer-than-normal temperatures strengthen
the belief of global warming amongst US adults between 2003-2010. The earlier sample
of Deryugina (2013) could suggest that heat shocks were unexpected during this period;
however, climate change has become popularized after the first decade and therefore could
be considered as “expected”. Goldsmith-Pinkham et al. (2022), for example, find that sea
level rise—a significant physical risk—has only been priced from 2010 on. Another reason
could be that only “extreme” heat events shift unexpected attention. We test for both of these
hypotheses in our robustness checks and find no empirical evidence for either mechanism.

5.2 National attention

Next, we examine the effect of TA and TAV on broader national attention to climate change.
To do so, we adopt the innovations of the WSJ climate news index as our aggregate climate
attention measure, as developed by Engle et al. (2020). Engle et al. (2020) build the index
from WSJ news articles that contain a discussion on climate change. Specifically, their
measure captures the intersection between the news article text on climate change and the
primary governmental or research source on which the article is based. Their assertion is
that news articles on climate change are published more frequently when climate concerns
are apparent. Their narrative index connects an increase in news coverage of climate change
with a heightened awareness of climate risks among investors.

For our empirical exercises, we again use specification denoted in equation 8 with the
innovations in the WSJ news index as the dependent variable. We aggregate TA and TAV
by the median value across all states to obtain a time series for both metrics—essentially
removing the notation s in equation 8. Performing a simple correlation between TAV and
the innovations in the WSJ news index produces a Pearson coefficient of 22.9%, indicating a
moderate positive relationship with the index. Performing the s the same exercise with TA
gives rise to a much weaker, negative coefficient of -7.8%.

Table 6 provides the regression results indicating that TAV has a moderate relationship
with the publication of climate-related news across the US. Specifically, we find positive and
significant coefficients on TAV when using pooled ordinary least squares, denoted in column
(1), and using seasonality fixed effects in column (2). In the most saturated specification in
column (3), we find a positive but not statistically significant relationship. The coefficient
remains large and the lack of significance is likely caused by the minimal variation remaining
after including time fixed effects. We uncover a non-significant but negative relationship
between TA and innovations in the WSJ news index, presented in the second row of Table
6. These results suggest that the number of unplanned articles written about climate change
are positively and contemporaneously correlated with TAV rather than TA.

Synthesizing the results from the empirical exercises testing the relationship between
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temperature shocks and attention, we conclude that TAV is positively associated with un-
expected state- and country-level attention towards climate change over and above TA. The
larger effect size of TAV substantiates our claim that this is the more salient metric. We
contend that unexpected swings in temperature variability grab the attention of news agen-
cies and, subsequently, investors across the nation. However, we are agnostic as to the type
of investor, as well as to whether investors do in fact read the articles that are published,
as attention is a scarce resource. Nevertheless, the results thus far imply that investors are
affected by elevated news coverage of climate risks, which lead to the pricing effects seen in
our asset pricing tests. This attention channel is one explanation of why investors reallocate
their portfolios.

5.3 Earnings call participant attention

The previous empirical results demonstrate a significant shift in attention towards climate
change, more generally, in response to changes in temperature variability. Explicitly, the
mechanism is that TAV acts as a precursor to investors—either retail or institutional—
incorporating the new information into their investments. We illustrate in this section that
earnings call participants, sophisticated investors, analysts, and managers, spend more time
discussing firms that are affected by shocks to temperature variability.

We adopt a physical climate exposure measure by Sautner et al. (2023) who use these
earnings call transcripts to develop a time-varying measure of firm-level exposure to physical
climate change risks. Specifically, we use their measure, CCExposurePhy, which captures
firm physical climate exposure because temperature shocks are a realized form of a physical
climate shock. Their methodology consists of using physical climate related bigrams, i.e.,
two word combinations, to sift through sentences and measure the discussion of physical
climate topics as a fraction of all other topics. Bigrams related to physical risk include word
combinations such as “air temperature”, “global warm”, and “sea level”. While the universe
of bigrams used in Sautner et al. (2023) do not completely match the risks of TA and TAV ,
we maintain that there is enough similarity between these metrics and CCExposurePhy.

Akin to our prior regressions using the innovations in attention indices, we obtain the
AR(1) residuals of CCExposurePhy and use εCCExposurePhy ,i,t as a measure of unexpected
attention to physical climate risks. Our empirical specification regresses these innovations on
TAV and TA with firm fixed effects:

εCCExposurePhy ,i,t = α + βT ∗ TAVs,t + βD ∗ TAs,t + βg ∗WSJt + βm ∗ εWSJ,t + γi + εi,s,t. (9)

for firm i at time t headquartered in state s. Although the transcript data is available at
a quarterly frequency, we use a yearly sample as the data contains significantly fewer non-
missing values. The main variation occurs at the state-year level, as this is where firms are
exposed to time-varying temperature shocks. Our assumption here is that the operational
footprint of the firm is located in the headquartered state.

In addition to the temperature metrics, we include the WSJ news index (WSJt) and
its innovations (εWSJ,t) by taking the average of each series over a year. There is considerable
overlap between attention and climate discourse as both investors and management may raise
the issue during periods of global attentiveness. The results of Sautner et al. (2020) confirm
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this view, finding a positive relationship between the WSJ index developed by Engle et al.
(2020) and their physical climate measure. We include both “expected” and “unexpected”
series as they both could contribute to greater attention paid during the call.

Table 7 presents the regression results for the full sample of firms in panel (a) and firms
screened by the centralization methodology in panel (b). All columns produce a statistically
significant association with TAV and firm-specific attention to physical climate exposure for
all firms. We interpret these results as TAV being associated with an increase in the pro-
portion of an earnings call that discusses physical climate change exposure. The coefficients
associated with the variable TAV retain their statistical significance after accounting for
the influence of both anticipated and unanticipated climate attention at the national level.
This suggests that shocks to temperature variability are a contributing factor in partici-
pants’ concerns regarding physical exposure to climate change, coexisting with the impact of
climate-related news articles. Probing the results further, we underscore that the treatment
is at the firm level. Therefore, earnings call participants—who may or may not be in the
affected state—are savvy enough to observe shocks occurring in the firm headquarter. There
are no significant coefficients on TA across all specifications suggesting that shifts in average
temperature are not consequential enough to discuss during earnings calls.

Using only firms that are concentrated near their headquarters reduces the magnitude
and significance of the coefficients related to TAV in Table 7. One reason for this result
could be that firms with geographically broader production networks are more often affected
by temperature shocks simply due to the breadth of their networks. These events are salient
enough to be noticed by analysts resulting in more frequent mentions of physical risks during
earnings calls.

In sum, the empirical findings are coherent with our results in Sections 5.1 and 5.2,
which suggested that TAV is a consequential driver of investor attention. Moreover, we
uncover here that a shock to temperature variability is salient event for sophisticated market
participants.

6 Temperature exposure and firm performance
We next empirically test whether temperature shocks, measured by our two metrics TA and
TA, affect performance for firms in the Russell 3000. Our prior asset pricing tests confirm
a synchronous equity reaction by the broader market to shocks to TAV and we continue by
measuring the material impact, if any.

Our focus is on understand the effects of the two metrics on accounting variables such
as revenues, sales, expenses, and, plant, property, equipment—all variables that could rea-
sonably be affected by temperature shocks. Our identification strategy, similar to that of
Pankratz et al. (2023), is to use the plausibly exogenous TAV and TA and estimate their
effects on the accounting variables using regressions that control for firm and time heterogene-
ity. Our saturated models sidestep the issue of “bad controls” (Angrist and Pischke, 2008)
by only using fixed-effects instead of accounting variables as controls because temperature
could realistically impact other line-items. Our specifications can be described as follows:

line item i,s,t

assets i,s,t−4

= α + βT ∗ TAVs,t + βD ∗ TAs,t + γi + ρt + εi,s,t. (10)
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where lineitem represents an accounting variable for firm i, headquartered in state s, in a
year and fiscal quarter t. The line items of interest are divided by total assets in order to
control for firm size, but lagged by four quarters to remove the issue of temperature shocks
potentially affecting total assets. We include firm and time (year-quarter) fixed-effects by
denoting γ and ρ, respectively. Similar to our prior regressions, we cluster our standard errors
at the treatment level, the state headquarter of a firm. The sample of firms only include the
firms that are centralized around their headquarters in order to capture the direct effect of
the temperature shocks on firm operations.

Table 16 shows TAV has negative but non-significant effect on the revenues of affected
firms across all industries; however, the results are more interesting when leveraging industry
heterogeneity. We split the sample based on our industry specific, cross sectional regression
results, into: consumer discretionary and consumer staples, utilities, and energy. In the
second column of panels (a) and (b) we illustrate a negative relationship between TAV and
total revenues driven entirely by the loss of sales in these industries. On the other hand, there
is no significant effect of TA on revenues. These results align with Addoum et al. (2020) who
find no material effects of abnormal temperatures on establishment sales.

The results are easily interpreted through an economic lens because the dependent
variable, revenues over total assets, is a classical measure of firm efficiency. For firms in
the consumer discretionary and staples sectors, a one-standard deviation increase in TAV is
associated with a moderate 48 basis point decrease of the ratio. An example of a firm in this
sector is the Hershey Company which has three of its six manufacturing plants and multiple
theme parks located in Pennsylvania. The estimated relationship implies that sales are
reduced during a quarter with greater deviation from its historical temperature variability.
In Table 9, we analyze the income statement and expenses of affected firms which adds
context to these findings on the balance sheet. Interestingly, we find a negative relationship
with total operating expenses for the consumer discretionary and staples sectors, driven by
decrease in the cost of goods sold. In standard accounting for firms with physical goods,
the cost of goods sold for a period is calculated by subtracting the ending inventory by the
sum of beginning and new inventory. Connecting the results from the balance sheet and
income statement, the results point to a situation where firms have difficulty in selling goods,
affecting returns over assets, which leads to an increase in the ending inventory.

The balance sheet and income statement of energy firms demonstrate a stronger reaction
to the impacts of TAV on firms within the consumer discretionary and staples sector. The
operations of energy firms in this sample largely consist of oil, gas, and mineral extraction.
A one-standard deviation increase in TAV leads to a 14.7% decrease in the ratio of sales
over lagged total assets for affected firms. These firms record revenue when a product, e.g.
a barrel of oil, is delivered to a customer and does not record revenue when they fail to meet
the obligations of their customers. An example of such a company is Brigham Minerals, Inc
which acquires oil and gas rights and leases out tracts of land to third party operators to
extract natural resources in Texas and nearby states. The third party operators bear the
costs of production and exploration and directly pass through these costs to the revenues of
Brigham Minerals. In this setting, the loss in revenues can therefore be interpreted as the
costs of production and exploration increasing for the lessees when temperature variability
increases. In the results of the income statement in Table 9, we find that cost of goods sold
decreases implying that ending inventories increase with respect to beginning inventories.

22



An interpretation of this relationship is that TAV impairs the transportation of the physical
goods of the lessees, leading to a greater number of goods that are unable to reach their
intended customers.

Lastly, we analyze the effects of temperature shocks on gross plant, property, and equip-
ment (PPE) normalized by lagged total assets in Table 10. PPE is of particular interest as
it captures physical equipment, structures, construction, and land—assets that are suscep-
tible to degradation stemming from increased temperature variability. Column (1) shows a
significant, negative relationship between TAV and PPE for all industries—specifically, a
one-standard deviation increase in TAV is associated with 40 basis point decrease in PPE.
For the consumer discretionary and staples sectors, we find a slightly larger effect of 52 basis
points with a one-standard deviation shock to TAV . These estimated relationships suggest
that increased temperature variability devalues the physical assets of affected firms ultimately
affecting their total assets and requiring them to invest in more resilient infrastructure. Once
more we find that deviations to average temperature anomalies have no significant effects to
firms’ PPE.

Our findings extend the prior the literature, focusing on abnormal heat or cold, by
showing that shocks to temperature variability have a significant effect on firm revenues and
expenses. Combining our prior results on attention, we show that investors are right to be
concerned about the effects of TAV on firm operations. Similar to Addoum et al. (2020),
we find a null effect of abnormal temperatures on balance sheet and income statement line
items.

23



7 Practical Utility of TAV: Examples of Measuring and
Reporting Temperature Risks

In a recent Financial Times article, it was underscored that businesses and investors seem
to prioritize the costs and risks of decarbonization over the tangible impacts of physical cli-
mate change (FT (2023)). This disparity is evident, as US corporate disclosures address the
physical repercussions of climate change only half as frequently as decarbonization topics,
based on findings from the Brookings think-tank.15 A significant reason is that much of the
disclosure reflects the risks that are easiest to quantify. Transition risks, which pertain to the
financial implications of the global shift towards a low-carbon economy, are more straight-
forward to measure than the complex physical risks posed by climate change. Moreover, the
heightened focus on transition risk aligns with the prevailing understanding of how finan-
cial assets might be impacted by climate policies. In essence, it’s easier for businesses to
wrap their heads around policy-driven financial implications than the physical threats of a
changing climate.16

This trend has not gone unnoticed by regulatory bodies. Companies are now under
mounting pressure to disclose climate-related financial risks. This comes in the wake of pro-
posals from regulatory agencies such as the Securities and Exchange Commission and the
European Financial Reporting Advisory Group. These bodies are pushing for rules that
would mandate companies to include specific climate-related disclosures in their financial
statements. This would encompass information about climate-related risks that could mate-
rially impact their operations or financial health, along with certain climate-related financial
metrics in their audited financial statements. Recently, the European Commission took a sig-
nificant step in this direction by adopting the European Sustainability Reporting Standards
(ESRS).17 This regulation will eventually mandate all listed companies operating within the
EU to disclose the climate’s impact on their operations. However, while the ESRS has clear
and specific mandatory reporting requirements for transition risks, such as direct and indirect
emissions, energy intensity, and energy consumption, it lacks clarity on the potential met-
rics for reporting financial effects arising from physical risks. The standards are also unclear
about the methods to be used for reporting and evaluating exposure to climate physical risks.

15Currently, a significant portion of publicly traded companies disclose some information related to climate
change. The majority of this information pertains to risks associated with transitioning away from fossil fuels.
However, there is a noticeable lack of disclosure regarding the physical risks of climate change, especially the
impacts of temperature changes.

16An expanding body of research has centered on transition and regulatory risk, establishing that investors
command higher returns and require a premium (Bolton and Kacperczyk, 2021; Cheema-Fox et al., 2020;
Görgen et al., 2020; Hsu et al., 2022; Lioui, 2022), that the market demands changes in the capital structure
(Nguyen and Phan, 2020; Kleimeier and Viehs, 2018), and that engagement effort concentrates on large firms
with high carbon emissions (Azar et al., 2021).

17The European Commission adopted a legislative proposal for a Corporate Sustainability Reporting
Directive (CSRD) in 2022, which entered into force on January 2023 and requires companies to report on
climate metrics relevant to both their own climate-related transition risks, as well as their impact on the
planet. The CSRD updated the bloc’s Non-Financial Reporting Directive (NFRD) and the Accounting
Directive to obligate more types of companies to report on climate and sustainability metrics. The ESRS
specifies the information that needs to be included under the CSRD. The CSRD also requires the Commission
to adopt standards for non-EU companies by June 2024.
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In this section, we explore the ramifications of our research findings on the processes of
measuring and reporting physical climate risks. This exploration is crucial for both corpo-
rations and investors, as understanding these risks can significantly impact decision-making
and strategic planning.

To underscore the practical utility of our measure in disclosing potential exposure to
physical climate risks, we embark on two distinct exercises. The first exercise contemplates a
scenario where a company discloses whether its exposure to temperature variations is trivial or
significant. Such disclosure can provide invaluable insights to policymakers and stakeholders
about the extent of a firm’s vulnerability to physical climate risks. This exercise is in harmony
with the guidelines set forth by the Task Force on Climate-related Financial Disclosures
(TCFD). According to TCFD principles, a company’s disclosure of climate exposure should
accurately represent the potential disruptions its operations might face due to specific physical
risks. For this exercise, we employ TAV projections, treating them as a conventional risk
factor typically used in risk management endeavors (Meucci 2005).

There are two potential methodologies to approach this: the historical simulation and
the forecast-driven projection. The historical simulation is relatively straightforward, oper-
ating under the assumption that the forthcoming TAV value will mirror its predecessor. The
forecast-driven projection, on the other hand, is more intricate. It necessitates projecting
daily temperatures for various US states and then applying expressions (1-4) to estimate
the TAV for the upcoming year. We embrace the forecast-driven projection methodology,
leveraging future-oriented projections sourced from specific research studies.

In our analysis, we conceptualize a hypothetical firm that operates fourteen distinct
installations situated in four separate states: Arizona, California, Colorado, and Iowa. To
assess the potential temperature risk exposure of this firm, we generate annual TAV values
for each of these states. TAV, as a measure, provides insights into the temperature anomaly
variability, which can be indicative of the physical risks associated with climate change.
By combining this TAV data with specific information about the firm’s installations – such
as their precise locations and the nature of operational activities conducted there – we can
gauge the potential impact of temperature anomalies on the firm’s operations. Now, with this
combined data, the firm can categorize its installations based on the level of risk they face due
to temperature anomalies. For instance, installations in areas with high TAV values might be
categorized as ’high risk’, while those with moderate values might fall under ’medium risk’. To
provide a comprehensive view of its risk exposure, the firm can then compute the percentage
of its installations that fall within each risk category. This would allow stakeholders to
understand, at a glance, the proportion of the firm’s operations that are at high or medium
risk due to temperature anomalies.18 Table 11 serves as a practical representation of this
hypothetical reporting exercise. The table categorizes installations into three distinct risk
levels: high, medium, and low. These categories are determined based on the projected TD-
VAR values for the subsequent year. For each risk category, the table displays the percentage

18While a straightforward approach would be to calculate this percentage based on a simple count of
installations in each category, a more nuanced method might involve weighting the installations based on
certain operational metrics. For instance, an installation that houses a significant portion of the firm’s
workforce or contributes a substantial amount to its sales might be given more weight in the computation.
This weighted approach ensures that the computed percentages reflect not just the number of installations
at risk, but also their relative importance to the firm’s overall operations.
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of the firm’s installations that fall within that category. This provides stakeholders with a
clear and concise overview of the firm’s potential exposure to climate risks, serving as a model
for how businesses can effectively report on ESRS and TCFD.

In the second exercise, we shift our lens to view the implications of temperature variabil-
ity from an investor’s vantage point. Investors, with their stakes in multiple firms spanning
various sectors, need a comprehensive measure to gauge the potential risks (and returns)
associated with their investments. The sector-portfolio-adjusted TAV emerges as a pivotal
metric in this context, offering insights into a portfolio’s susceptibility to temperature vari-
ability. The rationale behind emphasizing the sector-portfolio-adjusted TAV is rooted in the
sector-specific nuances we have uncovered in our earlier discussions. Different sectors, given
their unique operational dynamics, exhibit varying degrees of vulnerability to temperature
fluctuations. For instance, the Consumer Discretionary sector might be more immediately
and severely impacted by temperature anomalies compared to the Health sector. Thus, a
holistic assessment of portfolio risk necessitates a deep dive into these sectoral intricacies.

To operationalize this, an investor would begin by segmenting their portfolio based
on sectors. The spotlight would then be cast on sectors that are particularly sensitive to
temperature variability. For each identified sector, the investor would then compute the
TAV, but with a twist. Instead of a blanket approach, the TAV would be weighted based
on the geographical location of the firms’ headquarters. This is crucial because temperature
variability is inherently spatial, with some regions experiencing more pronounced fluctuations
than others. The resultant metric, the sector-specific TAV, encapsulates both the sectoral
and geographical dimensions of risk.

To translate this metric into actionable insights, investors can draw parallels with his-
torical data. For instance, if past trends indicate that a 1% underperformance in the energy
sector corresponds to a TAV of, say, 5%, investors can set their expectations and strategies
accordingly. Table 12 encapsulates this analytical process, presenting the TAV computations
for a representative portfolio. By integrating sectoral and geographical nuances, this table
offers investors a granular view of their exposure to temperature variability, empowering
them to make informed decisions in an era where climate considerations are increasingly
intertwined with financial outcomes.

The two exercises presented in this section underscore the applicability of our temper-
ature metric in the realm of climate physical risk reporting.

8 Robustness Checks

8.1 Temperature exposure and weather derivative pricing

The relevant impact of weather on electricity demand has facilitated the creation of a market
for weather derivatives. This market enables utility firms to hedge volumetric risk by trading
the underlying risk driver – temperature – rather than the price of electricity (Jewson and
Brix (2005)). We further validate our temperature measures by testing their association with
city-level temperature derivatives prices.

We hypothesize that, if traders account for deviations in temperature volatility, TD-
V AR should capture more variation in weather derivatives prices than TD. To verify that our
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measure is relevant for weather derivative markets, akin to Diebold and Rudebusch (2019),
we analyze futures contracts offered by the CME. The key benefit of this approach is that
Schlenker and Taylor (2021) find that market participants accurately incorporate temperature
anomalies through climate model projections. We extend this line of thought to confirm
whether TD-V AR is a driver of these contract prices. The first contract follows HDDs,
which reflects the amount of heating required during cold days in winter. The second tracks
CDDs that measure the necessary cooling required during hot days in summer. Therefore,
CDDs have effective values in summer and HDDs in winter. We strictly define CDDs and
HDDs where T0 is set at 65°F for a contract traded at the CME:

CDDi,m =
∑Dm

d=1(Td − T0)+

HDDi,m =
∑Dm

d=1(T0 − Td)+.
(11)

We use ordinal least square (OLS) regression analysis to investigate whether monthly
average prices for CDDs and HDDs are affected by temperature – measured as temperature
deviation and deviation in temperature variability. We estimate CDDs and HDDs separately
with the following equations:19

CDDs,m = βtTm + βeT̃Dt + βvTD-V AR + βvσ(TD) + γm + ηs + ε

HDDs,m = α + βtTm + βeT̃Dt + βvTD-V AR + βvσ(TD) + γm + ηs + ε,
(12)

where Tm is the average daily temperature level minus 65°F degrees and T̃D, σ(TD), and
TD-V AR are defined in Section (??). For month and state fixed effects, we include γm and
ηs, respectively. We only consider the constant term in winter given that the contract is
not written on the maximum temperature of 65°F. We split the contract data into winter
(October to March, inclusive) and summer months (April to September, inclusive).

Table 14 shows the results for the two contracts using various temperature drivers.
The first column of each panel includes the underlying temperature on which the contract
is written, while the second column includes the other volatility measures. We show that
Tm alone is able to explain 90% of monthly average price variance for CDDs in summer and
95% for HDDs in winter. An increase in temperature results in a decline in the price of
CDDs, and vice versa for HDDs. Unsurprisingly, the magnitude of the coefficients is similar
and of opposite sign, given that the derivative is dependent on the deviation from the 65°F
threshold.

We then consider the remaining statistics: TD-V AR, T̃D, and σ(TD). We document
that historical variability, σ(TD), has a large significant coefficient during the winter but
no effect in summer. The result supports the findings in prior literature that temperature
volatility is greater during these months.20 The coefficients for TD-V AR are comparable
across winter and summer, which is intuitive when recalling the option price effect of the
volatility on the underlying asset. Higher deviations in temperature variability from the

19We use the derivatives defined in Section ??, and only consider the seven cities for which the derivatives
are still traded.

20Examining the seasonal component of temperature volatility, Campbell and Diebold (2005) and Benth
and Benth (2007) document the higher values of temperature volatility during winter times.
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historical mean increase the probability of experiencing extreme temperatures and, conse-
quently, increase the probability of exercising the option, thereby increasing the value of the
weather derivative contract. This indicates that two cities with comparable average temper-
atures may face diverging weather derivatives prices when one city is characterized by higher
temperature variability. Finally, we compare the coefficients of TD which have signs in the
opposite direction to Tm. This suggests that traders assume temperatures will revert back to
their historical levels when a city experiences higher temperature deviations. Collectively, we
find that traders react negatively to increasing TD-V AR by establishing a higher price for
the apparent risk, whereas an increase in TD implies a reversion to the mean for the market.

Our validation exercises strongly suggest that shifts in temperature variability, TD-
V AR, are primary drivers of electricity consumption and the weather futures market. The
results are consistent with Diebold and Rudebusch (2019) in demonstrating that refined
measurements of temperature extremes can be consequential for financial asset prices. This
confirmatory evidence also suggests that we are better able to characterize the reactions of
market participants using deviations in temperature variability than by referring to temper-
ature deviations alone. We continue this line of reasoning by asking whether this market
response to TD-V AR has further implications for the stock market.

8.2 Temperature exposure and electricity consumption

Our prior examples reveal that the TD-V AR measure compares favorably to TD in cap-
turing the incidence of temperature extremes. Next, we test the salience and validity of
our measure, TD-V AR, by investigating whether deviations in temperature variability are a
relevant driver of energy consumption and prices in the weather derivatives market. This fol-
lows prior research by Campbell and Diebold (2005), who document that unexpected weather
fluctuations can cause substantial pricing effects on the weather derivatives market and its
players, such as energy producers and consumers. Given that TD-V AR captures extreme
fluctuations in temperature, we expect TD-V AR to perform better than TD at accounting
for variations in energy consumption and weather derivative prices.

We begin by examining the effect of T̃D and TD-V AR for energy consumption. We
obtain time-series data on energy demand at the monthly frequency from the U.S. Energy
Information Administration for all states. Energy consumption is classified by sector: resi-
dential, commercial, industry and transportation. Since energy consumption displays strong
seasonal patterns, our analysis focuses on modeling short-run temperature shocks not cap-
tured by long-term trend analysis (Son and Kim (2017)). We link the observed seasonality
of monthly demand (Bigerna (2018)) to the two components of temperature: anomalies and
deviation in variability. We first run an ARMA (J,P) for each state s following Bigerna
(2018):

Qs,t =
J∑

j=1

ajQt−j +
P∑

p=1

bpεt−p + εs,t (13)

where Qs,t represents the electricity consumption in state s at time t, J is the autore-
gression order and P is the moving average order. We then check the significance on the
residual against TD-V AR and TD respectively, and estimate a fixed effects model:
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εt = βv ∗ TD-V AR + βt ∗ T̃D + γt + ηn + ε. (14)

Table (15) shows the resulting coefficients. We observe a positive and statistically
significant β coefficient for the deviation in temperature variability, TD-V AR, in residential
and industrial sectors and in the aggregate. A positive coefficient implies that, in a month
characterized by high variability, the forecast value of electricity consumption exhibits a larger
error relative to the best-fit value estimated through Equation (13). This error is inherently
determined by the extent of the variability. The non-significant coefficient for TD-V AR
in the commercial sector suggests that the elasticity of electricity consumption is different
for the residential and commercial sectors. This conclusion is supported by Zachariadis
and Pashourtidou (2007) who find that the residential sector is highly reactive to weather
conditions, as demand in the short term is inelastic to price. Taken together, our results
confirm prior evidence of energy consumption being highly affected by weather conditions
(Quayle and Diaz (1980)) and sensitive to large shifts in temperature variation. (Chang et al.
(2016)).

9 Conclusion
Extreme temperatures have been found to modulate financial markets. Furthermore, climate
scientists have found that the distribution of temperature anomalies is becoming broader
with an asymmetric lengthening of its tails (Hansen et al. (2012)). Using these facts as our
motivation, we derive a metric, TD-V AR which represents the deviation of the unconditional
volatility from its historical level. We confirm the saliency of the metric on financial markets
by using its monthly and annual realizations. At all stages, we compare our statistic to a
widely accepted form of extreme temperature realizations: temperature anomalies or TD.

Through a set of empirical exercises, we demonstrate that shifts in TD-V AR are pri-
mary drivers of: (1) energy consumption, (2) weather futures, and (3) U.S. stock markets.
When we execute a hedging strategy by incorporating differential firm exposure, we find
substantial market-adjusted returns suggesting excess return predictability. Finally, we in-
vestigate the underlying mechanisms and show that the observed pricing effects occur due
to a combination of investor attention and firm-level repercussions as a result of changes to
TD-V AR rather than TD.

Our results have considerable implications for the energy and utilities sectors which are
sensitive to day-to-day temperature variability as well as heat and cold waves. While we find
a moderated effect on consumer sectors, we believe that a larger effect size would be found
with the inclusion of more granular footprint data to better identify firm exposure. We leave
this for future research.

The statistical methodology outlined in the paper can be readily scaled and replicated
to assess the physical risk of other geographic regions. Furthermore, TD-VAR can serve as a
reference of physical risks in the disclosures of organisations to better measure the exposure
of their operations. Specifically, the metric can be applied to evaluate acute climate risks -
a recommendation set out by the Task Force on Climate-related Financial Disclosures.
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10 Tables

Table 1: Summary Statistics, Russel 3000

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
LOGSIZE 9.18 9.21 9.08 8.97 9.10 9.17 9.18 9.28 9.34 9.34 9.32 9.40 9.43 9.42 9.40
B/M 12.88 14.38 15.03 13.69 13.99 14.55 14.45 14.99 15.69 16.11 15.69 15.91 16.75 17.14 17.82
ROE 11.25 9.04 -1.38 3.05 7.17 7.79 7.77 8.22 6.87 3.48 3.60 5.14 3.96 0.92 -4.59
INESTA 20.15 20.31 21.01 23.03 22.07 21.66 22.62 23.63 23.12 24.31 25.48 25.60 25.32 25.51 24.85
DEBTA 23.92 24.10 24.92 27.34 25.76 25.06 26.18 27.04 26.17 27.22 28.34 28.80 28.31 28.37 27.72
INVEST/A 5.92 5.64 4.86 3.45 4.13 4.99 4.92 4.77 4.74 4.42 4.08 4.10 4.24 4.02 3.02
LOGPPE 8.19 8.22 8.25 8.26 8.25 8.26 8.26 8.26 8.24 8.24 8.25 8.26 8.27 8.28 8.39
MOM 1.26 0.23 -3.78 3.57 2.09 0.58 1.48 3.03 0.89 0.45 1.16 1.68 0.27 1.03 1.94

The table provides summary statistics for the control variables of the components of the Russell 3000 index.
Each component is given equal weight each year. ’LOGSIZE’ refers to the natural logarithm of the market
capitalization, which is the total market value of a company’s outstanding shares of stock. ’B/M’ is the
ratio of a firm’s book value (the value of a company’s assets that shareholders would theoretically receive if
a company were liquidated) to its yearly market capitalization. ’ROE’ stands for Return on Equity, which is
the ratio of a firm’s net yearly income divided by the value of its equity. ’LEVERAGE’ is the ratio of debt
to the book value of assets. ’INVEST/A’ represents the firm’s yearly capital expenditures (the funds used
by a company to acquire or upgrade physical assets such as property, industrial buildings, or equipment)
divided by the book value of its assets. ’LOGPPE’ is the natural logarithm of the firm’s property, plant, and
equipment. ’MOM’ is the average of returns on stock for the 12 months up to and including month t− 1.

Table 13: Specification of city dataset

City GHCND Code State Weather Derivative Mean Std
Atlanta GHCND:USW00013874 Georgia X 72.0 15.3
Boston GHCND:USW00014739 Massachusetts 59.3 18.4
Baltimore Washington GHCND:USW00093721 Maryland 65.6 18.6
Cincinnati GHCND:USW00093814 Ohio X 63.8 19.7
Chicago GHCND:USW00094846 Illinois X 59.0 21.5
Dallas Forth Woot GHCND:USW00093904 Texas 79.6 16.1
Des Moines GHCND:USW00014933 Iowa 60.2 22.7
Detroit GHCND:USW00014822 Michigan 58.7 20.7
Las Vegas GHCND:USW00023169 Nevada X 80.2 18.5
Minneapolis GHCND:USW00014922 Minnesota X 54.9 24.1
New York La Guardia GHCND:USW00014732 New York X 62.3 18.4
Portland GHCND:USW00024229 Oregon X 63.0 14.5
Philadelpia GHCND:USW00013739 Pennsylvania 64.4 18.8
Salt Lake City GHCND:USW00024127 Utah 64.3 21.2
Tucson GHCND:USW00023160 Arizona 83.2 14.9

The table outlines the details of the cities for which we have obtained daily Global Historical Climatology
Network (GHNC) data from the U.S. National Oceanic and Atmospheric Administration (NOAA). The
data collection points correspond with the airports of these cities. The column labeled ’Weather Derivatives’
indicates the cities for which a Cooling Degree Days (CDD) or Heating Degree Days (HDD) weather derivative
is traded on the Chicago Mercantile Exchange (CME). Mean and Std are the summary statistics related to
the temperature levels in Fahrenheit Degrees(°F).
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Table 2: Abnormal returns to portfolios sorted on temperature metrics for geographically
concentrated firms

Panel A: Portfolios sorted on TA
Excess Return 3-Factor 4-Factor 4-Factor + Liq

Quartiles 1 1.0761*** 0.3338* 0.3348* 0.3365*
(2.8411) (1.7856) (1.7846) (1.7726)

Quartiles 2 and 3 0.7279** 0.0240 0.0227 0.0227
(2.2627) (0.3278) (0.3099) (0.3099)

Quartile 4 0.8771** 0.1521 0.1447 0.1468
(2.5520) (0.9633) (0.9323) (0.9506)

Quartile 1 - 4 0.1049 0.0861 0.0944 0.0927
(0.4117) (0.3427) (0.3788) (0.3704)

Panel B: Portfolios sorted on TAV
Excess Return 3-Factor 4-Factor 4-Factor + Liq

Quartiles 1 1.1575*** 0.4334** 0.4419** 0.4510**
(3.1815) (2.4354) (2.4802) (2.5503)

Quartiles 2 and 3 0.7909** 0.0839 0.0839 0.0845
(2.5229) (1.3017) (1.3017) (1.3032)

Quartile 4 0.6131 -0.1270 -0.1253 -0.1082
(1.5969) (-0.6356) (-0.6228) (-0.5439)

Quartile 1 - 4 0.4503* 0.4648* 0.4717* 0.4622*
(1.6825) (1.6619) (1.6786) (1.6566)

t-stats reported in parentheses
***1% significance,**5% significance, *10% significance,

Table (2). The sample period is from 2006 to 2020. It reports the alpha (in percentage) to quintile portfolios
sorted on TA (Panel A) and TAV (Panel B). At the end of each month t, we sort states into quintile portfolios
based on their TA and TAV, separately, using data up to month t. Returns for each quintile portfolio is the
value-weighted returns of the firms headquartered in each state. Quintile 1 are those U.S. states with the
lowest values of temperature deviations TA (Panel A); and lowest value of deviation of temperature variability
TAV (Panel B). Quintile 5 are those countries with the highest values of temperature deviations TA (Panel
A); and lowest value of deviation of temperature variability TAV (Panel B). We group the middle three
quintile portfolios together by equal-weighting their respective returns and denote it as “Quintiles 2–4”. We
report the mean excess returns, alphas based on CAPM, three-factor model, and four-factor model. “(1–5)”
reports the return spread between the top and bottom quintiles.

35



Table 3: The effect of TA(A) and TAV (B) on industry returns

Panel A: Temperature anomalies: TA
Ind Energy Health IT Utilities Staple C. Disc Mat Fin Comm

TA 0.0510 0.1452 0.0852 -0.0076 -0.1004** -0.0036 -0.0268 -0.0780 0.0119 -0.0101
(1.1508) (0.9032) (0.8592) (-0.1381) (-2.5604) (-0.0500) (-0.5041) (-1.0290) (0.3195) (-0.1021)

LOGSIZE -4.3981*** -2.7935*** -4.0251*** -4.5562*** -3.1566*** -4.6041*** -5.1566*** -5.7560*** -2.8803*** -4.4655***
(-11.816) (-5.6288) (-8.2804) (-9.5827) (-7.0067) (-8.3714) (-14.519) (-12.504) (-11.977) (-7.3882)

B/M 0.0042 -0.0456* -0.0224 0.0447* 0.0349 0.0355 0.0269 0.1293*** -0.0177* 0.0552**
(0.2098) (-1.9141) (-1.1148) (1.7702) (1.5437) (1.5955) (1.1453) (4.6954) (-1.7409) (2.0166)

ROE 0.0360*** 0.0181 0.0351*** 0.0517*** 0.0619*** 0.0486*** 0.0516*** 0.0706*** 0.0795*** 0.0345***
(4.1566) (1.1995) (4.4550) (6.9696) (2.8095) (3.2003) (8.2675) (6.9395) (6.4879) (3.5929)

LEVERAGE 0.0014 -0.0255 -0.0001 0.0361*** -0.0033 0.0180 -0.0420*** 0.0152 -0.0213** 0.0223
(0.1429) (-1.2480) (-0.2092) (2.6880) (-0.1727) (1.2436) (-2.8260) (0.9949) (-2.2622) (1.0244)

INVEST/A 0.0501* 0.0913 0.0618 0.0439 0.0126 0.1058* -0.0246 0.0025 -0.1464* -0.0403
(1.6797) (1.5282) (1.1325) (0.6122) (0.3603) (1.9201) (-0.8990) (0.0481) (-1.8887) (-0.6033)

LOGPPE 0.9937*** 1.7880* -0.3065 -0.0303 0.1252** 0.9673*** 0.8023*** 0.7069* 0.4224** 0.9395**
(3.7276) (1.8732) (-0.8975) (-0.0955) (2.3325) (3.7254) (2.6222) (1.7622) (2.2345) (2.4444)

MOM 0.0235 -0.1375 -0.0134 -0.0499 -0.0545 0.0437 -0.0692* 0.0504 -0.2512*** -0.1031
(0.5090) (-1.2486) (-0.2569) (-1.1200) (-0.5840) (0.6600) (-1.6582) (0.8254) (-5.3834) (-1.2196)

Year/month FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
No. Observations 26670 6731 17509 18058 6321 7441 18543 8911 22365 5380
Firm/year cluster Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
R-squared 0.0237 0.0239 0.0138 0.0294 0.0210 0.0278 0.0355 0.0406 0.0279 0.0314

Panel B: Temperature anomaly variability: TAV
Ind Energy Health IT Utilities Staple C. Disc Mat Fin Comm

TAV -0.2476 -0.9477** 0.4770 0.2354 0.3552** -0.9432*** -0.6084*** 0.0163 -0.0670 0.5953
(0.1541) (0.4652) (0.3478) (0.2283) (0.1538) (0.2646) (0.2236) (0.2770) (0.1357) (0.4177)

LOGSIZE -4.3964*** -2.7972*** -4.0210*** -4.5571*** -3.1496*** -4.6158*** -5.1595*** -5.7561*** -2.8808*** -4.4402***
(0.3723) (0.4961) (0.4868) (0.4755) (0.4501) (0.5489) (0.3551) (0.4605) (0.2404) (0.6057)

B/M 0.0042 -0.0459* -0.0232 0.0451* 0.0360 0.0353 0.0278 0.1289*** -0.0177* 0.0536*
(0.0200) (0.0238) (0.0201) (0.0253) (0.0226) (0.0222) (0.0235) (0.0275) (0.0102) (0.0275)

ROE 0.0359*** 0.0179 0.0350*** 0.0518*** 0.0616*** 0.0486*** 0.0516*** 0.0705*** 0.0794*** 0.0347***
(0.0087) (0.0150) (0.0079) (0.0074) (0.0220) (0.0152) (0.0062) (0.0102) (0.0123) (0.0096)

LEVERAGE 0.0012 -0.0261 -0.0001 0.0362*** -0.0043 0.0179 -0.0417*** 0.0148 -0.0213** 0.0221
(0.0097) (0.0204) (0.0006) (0.0134) (0.0189) (0.0145) (0.0149) (0.0153) (0.0094) (0.0218)

INVEST/A 0.0502* 0.0922 0.0575 0.0441 0.0134 0.1048* -0.0245 0.0032 -0.1464* -0.0430
(0.0298) (0.0596) (0.0547) (0.0717) (0.0351) (0.0550) (0.0273) (0.0515) (0.0776) (0.0668)

LOGPPE 0.9949*** 1.8210* -0.3006 -0.0319 0.1170** 0.9734*** 0.7981*** 0.7175* 0.4214** 0.9523**
(0.2666) (0.9533) (0.3400) (0.3172) (0.0536) (0.2603) (0.3062) (0.4015) (0.1890) (0.3845)

MOM 0.0237 -0.1369 -0.0135 -0.0502 -0.0561 0.0468 -0.0698* 0.0516 -0.2513*** -0.1056
(0.0460) (0.1104) (0.0521) (0.0446) (0.0932) (0.0662) (0.0417) (0.0611) (0.0467) (0.0843)

Year/month FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
No. Observations 26670 6731 17509 18058 6321 7441 18543 8911 22365 5380
Firm/year clusters Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
R-squared 0.0237 0.0243 0.0139 0.0295 0.0209 0.0295 0.0359 0.0405 0.0279 0.0317
Standard errors reported in parentheses
***1% significance,**5% significance, *10% significance,

Table (3). The sample period is 2005-2020. All variables are defined in Tables (1) in the Data
section. The independent variables include the deviation of daily temperature from its historical
mean within a month (Panel A) or the deviation of daily temperature variability from its histor-
ical variability level within a month (Panel B). We use the Global Industry Classification Stan-
dard to identify a firm’s sectoral affiliation. We consider the following sectors: Information Tech-
nology (IT), Health Care (Health), Financials (Fin), Consumer Discretionary (C. Disc), Communi-
cation Services (Comm), Industrials (Ind), Consumer Staples (Staple), Energy, Utilities, Real Es-
tate (RE), and Materials (Mat). We refer to this document for an overview of the classification:
http://www.msci.com/our-solutions/indexes/gics. We report the results of the panel regression
with standard errors clustered at the firm and year levels. All regressions include month fixed effects
and firm fixed effects.
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Table 4: Estimation for TA and TAV , three sector, different periods

Energy Staple Health
Dep. Variable: r 2006-2010 2011-2015 2016-2020 2006-2010 2011-2015 2016-2020 2006-2010 2011-2015 2016-2020

T̃D 0.267 0.1491 0.180 -0.324 -0.0739 0.3745 0.4770 0.1546 0.1036
(0.4652) (0.5246) (0.7636) (0.2646) (0.2898) (0.4061) (0.3478) (0.3990) (0.5384)

TD-V AR -0.4975* -0.0863 -2.4626*** -1.0146*** -0.9042*** -0.8223*** 0.4770 0.3278 0.5901
(0.3652) (0.5246) (0.7636) (0.2646) (0.2898) (0.4061) (0.3478) (0.3990) (0.5384)

Firm fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Time fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
No. Observations 6731 5171 3067 7441 5523 3252 17509 13700 9017
Cov. Est. Clustered Clustered Clustered Clustered Clustered Clustered Clustered Clustered Clustered
R-squared 0.0243 0.0386 0.0621 0.0295 0.0260 0.0478 0.0139 0.0127 0.0161
Standard errors reported in parentheses
***1% significance,**5% significance, *10% significance,

Table 4 The sample period 2005-2020 is divided into three equal sub-periods. The independent variables
include in turn the deviation of daily temperature from its historical mean within a month (first row)
or the deviation of daily temperature variability from its historical mean in the same month (second
row). We report the results of the panel regression with standard errors clustered at the firm and year
levels. All regressions include month fixed effects and firm fixed effects

Table 5: The impact of TA and TAV on state-specific climate attention

Climate Change (a) Climate Variability and Change (b)

(1) (2) (3) (4) (5) (6)

TAV 3.171∗∗∗ 3.376∗∗∗ 0.773∗∗ 0.672∗∗ 0.716∗∗ 0.239
(6.42) (6.57) (2.25) (2.04) (2.01) (0.65)

TA -0.400∗∗∗ -0.380∗∗∗ -0.077 -0.063 -0.058 -0.167
(-3.64) (-3.40) (-0.70) (-0.62) (-0.57) (-1.11)

State FE No Yes Yes No Yes Yes
YearxQuarter FE No No Yes No No Yes
R Squared 0.018 0.019 0.742 0.002 0.002 0.088
Observations 2950 2950 2950 2950 2950 2950

This table presents results associating state level Google attention to the topics “Climate Change”
and “Climate Variability and Change” to temperature anomalies (TA) and variability of temperature
anomalies (TAV ). The two attention indices, at the quarterly frequency, are regressed onto TA and
TAV with varying fixed effects. Standard errors are clustered at the US state level. T statistics in
parentheses. Statistical significance is calculated at the 1%, 5%, and 10% levels are indicated by ***,
**, *, respectively.
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Table 6: The impact of TA and TAV on national climate attention

(1) (2) (3)

TAV 0.932∗∗ 1.077∗∗ 0.677
(2.435) (2.306) (1.382)

TA -0.204 -0.220 -0.101
(-0.882) (-1.051) (-0.538)

Fixed Effect None Quarter Yr Quarter
R Squared 0.089 0.247 0.507
Observations 50 50 50

This table presents results associating the national Wall Street Journal news index developed by Engle
et al. (2020) to temperature anomalies (TA) and variability of temperature anomalies (TAV ). The
attention index, at the quarterly frequency, is regressed onto TA and TAV with varying fixed effects.
Standard errors are clustered at the US state level. T statistics in parentheses. Statistical significance
is calculated at the 1%, 5%, and 10% levels are indicated by ***, **, *, respectively.
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Table 8: The impact of TA and TAV on firm revenue

Panel A: Total Revenues

(1) (2) (3) (4)
All Industries Cons Disc/Staples Utilities Energy

TAV -0.149 -0.011∗∗ 0.001 -0.335∗
(-1.239) (-2.488) (0.741) (-2.197)

TA 0.039 0.001 -0.001 -0.046
(0.958) (0.634) (-1.531) (-1.397)

Firm FE Yes Yes Yes Yes
Time FE Yes Yes Yes Yes
Industry FE Yes No No No
R Squared 0.023 0.728 0.650 0.142
Observations 61066 8415 2914 3178

Panel B: Sales

(1) (2) (3) (4)
All Industries Cons Disc/Staples Utilities Energy

TAV -0.124 -0.011∗∗ 0.001 -0.335∗
(-1.234) (-2.488) (0.741) (-2.197)

TA 0.034 0.001 -0.001 -0.046
(0.963) (0.634) (-1.531) (-1.397)

Firm FE Yes Yes Yes Yes
Time FE Yes Yes Yes Yes
Industry FE Yes No No No
R Squared 0.023 0.728 0.650 0.142
Observations 70201 8415 2914 3178

This table presents results associating firm revenues and sales to temperature anomalies (TA) and
variability of temperature anomalies (TAV ). Both total revenues and sales are scaled by the year ago
total assets of the firm. The scaled variables are regressed onto TA and TAV with varying fixed effects.
Standard errors are clustered at the US state level. T statistics in parentheses. Statistical significance
is calculated at the 1%, 5%, and 10% levels are indicated by ***, **, *, respectively.
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Table 9: The impact of TA and TAV on firm expenses

Panel A: Total Operating Expense

(1) (2) (3) (4)
All Industries Cons Disc/Staples Utilities Energy

TDVAR -0.075 -0.008∗∗ 0.000 -0.252∗
(-1.145) (-2.060) (0.355) (-2.171)

TD 0.022 -0.000 -0.000 -0.033
(1.024) (-0.102) (-0.644) (-1.207)

Firm FE Yes Yes Yes Yes
Time FE Yes Yes Yes Yes
Industry FE Yes No No No
R Squared 0.026 0.746 0.682 0.181
Observations 70076 8401 2913 3164

Panel B: Cost of Goods Sold

(1) (2) (3) (4)
All Industries Cons Disc/Staples Utilities Energy

TAV -0.078 -0.006∗∗ 0.000 -0.228∗∗
(-1.268) (-2.140) (0.331) (-2.285)

TA 0.020 -0.000 -0.000 -0.037
(0.913) (-0.015) (-0.642) (-1.475)

Firm FE Yes Yes Yes Yes
Time FE Yes Yes Yes Yes
Industry FE Yes Yes No No
R Squared 0.024 0.783 0.685 0.147
Observations 70115 8410 2913 3168

This table presents results associating firm expenses and cost of goods sold to temperature anomalies
(TA) and variability of temperature anomalies (TAV ). Both total revenues and sales are scaled by the
year ago total assets of the firm. The scaled variables are regressed onto TA and TAV with varying
fixed effects. Standard errors are clustered at the US state level. T statistics in parentheses. Statistical
significance is calculated at the 1%, 5%, and 10% levels are indicated by ***, **, *, respectively.
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Table 10: The impact of TA and TAV on gross plant, property, equipment

(1) (2) (3) (4)
All Industries Cons Disc/Staples Utilities Energy

TAV -0.009∗∗∗ -0.012∗ 0.009 -0.002
(-3.041) (-1.811) (1.505) (-0.080)

TA 0.001 0.004 0.001 -0.004
(0.642) (1.382) (0.395) (-0.233)

Firm FE Yes Yes Yes Yes
Time FE Yes Yes Yes Yes
Industry FE Yes No No No
R Squared 0.794 0.820 0.663 0.597
Observations 39810 5301 2646 2709

This table presents results associating firm gross plant, property and equipment to temperature anoma-
lies (TA) and variability of temperature anomalies (TAV ). Both total revenues and sales are scaled by
the year ago total assets of the firm. The scaled variables are regressed onto TA and TAV with varying
fixed effects. Standard errors are clustered at the US state level. T statistics in parentheses. Statistical
significance is calculated at the 1%, 5%, and 10% levels are indicated by ***, **, *, respectively.

Table 11: Reporting TAV : Firm level exposure

State TAV Installations
AZ -0.18 3
CA 0.77 5
CO -1.87 2
IA -1.23 4

Firm Exposure
High 36%
Medium 21%
Low 43%

Table(11). Shows a practical approach for climate reporting exercise from a firm point of view. The first
part reports the firm’s installation breakdown among the 4 states in which it operates. Associated to each
state, TAV indicates the magnitude of TAV forecasted for the following operating period. The last section
of the table presents the percentage of firm’s installations that are exposed respectively at a high, medium
or low TAV risk.)
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Table 12: Reporting TAV : Portfolio Exposure

State Pct Portafoglio TAV
NV 8.81% -0.01
OK 29.88% -0.53
OR 23.28% 1.19
SD 38.03% -0.25
TAV Exposure 0.024

Table(12). Shows a practical approach for climate reporting exercise for a hypothetical Financial Portfolio.
The first column reports the different states in which stock headquarters are located. The second column
reports the Percentage of portfolio allocation invested in firms whose headquarters correspond to the state.
The column TAV reports the forecasted TAV for the following year. TAV exposure represents the weighted
average of TAV exposure.)

Table 14: Estimation of Weather Derivates price driver

CDD HDD
(1) (2) (1) (2)

Tm 22.262*** 25.516*** -25.980*** -26.018***
(1.7786) (2.1067) (0.8380) (0.9349)

TAV 4.0458** 3.5812***
(1.9917) (0.8282)

TA -11.082*** 5.4309***
(1.6592) (0.6308)

σ(TA) 2.0248 19.595**
(6.0450) (9.2184)

α 326.87*** 140.60*
(11.508) (79.420)

Estimator PanelOLS PanelOLS PanelOLS PanelOLS
No. Observations 438 438 542 542
Cov. Est. Clustered Clustered Clustered Clustered
R-squared 0.8807 0.9188 0.9501 0.9630
Standard errors reported in parentheses
***1% significance,**5% significance, *10% significance,

Table 14. Sample period is 2015-2020. Estimation of model 12 for different specification. The
dependent variabile is CDD and HDD respectively and the main independent variable is Tm that
represent the maximum temperature minus 65°F, threshold level for futures contract traded at
CME. Model (1) considers only Tm as regressor, that represent the underlying. (2) considers all the
regresses.Estimation is run trough a PanelOLS employing fixed effect for entities and time. Standard
errors are clustered both at entity and time levels
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Table 15: Estimation Results for energy consumption

Residential Commercial Industrial Total
TD-V AR 0.0054*** 0.0006 0.0020** 0.0025***

(0.0011) (0.0006) (0.0009) (0.0005)
T̃D -0.0011 0.0013** 0.0004 0.0002

(0.0008) (0.0006) (0.0004) (0.0006)
Firm fixed effects Yes Yes Yes Yes
Year fixed effects Yes Yes Yes Yes
No. Observations 9000 9000 9000 9000
Cov. Est. Clustered Clustered Clustered Clustered
R-squared 0.0038 0.0034 0.0010 0.0027
Standard errors reported in parentheses
***1% significance,**5% significance, *10% significance,

Table (15) The sample period is 2005-2020. The Table presents the estimated coefficient for equation εt =
βv ∗ TDV AR+ βt ∗ TD+ γt + ηn + ε in the different sectors, Residential, Commercial, Industrial and Total,
that represents the aggregation. Estimation is run trough a PanelOLS employing fixed effect for entities and
time. Standard errors are clustered both at entity and time levels. The sample period is 2005-2020 for the
50 US state. T̃D and TD-V AR are the state level temperature measure as defined in equation (??, 5)

Table 16: The impact of TA and TAV on retail sales

(1) (2) (3) (4) (5)
TA 0.094 0.011 -0.002

(1.621) (0.152) (-0.029)

TAV -2.259∗∗∗ -1.969∗∗ -1.970∗∗
(-6.962) (-3.026) (-2.901)

Time FE No No Yes Yes Yes
Adj R Squared 0.009 0.095 0.259 0.295 0.295
Observations 396 396 396 396 396

This table presents results associating year-over-year growth in retail sales for the largest metropolitan
areas in the US to temperature anomalies (TA) and variability of temperature anomalies (TAV ). Both
total revenues and sales are scaled by the year ago total assets of the firm. The scaled variables are
regressed onto TA and TAV with varying fixed effects. Standard errors are clustered at the US state
level. T statistics in parentheses. Statistical significance is calculated at the 1%, 5%, and 10% levels
are indicated by ***, **, *, respectively.
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11 Figures

Figure 1: Distribution of Temperature Anomalies in the US

Figure 1 illustrates the normal density distribution of average yearly temperature anomalies for 35-year
periods in the United States. Data is collected from the Berkeley Earth Land Temperature Record
that defines an anomaly as the realized temperature subtracted from the average in the pre-industrial
period, 1850-1900.

Figure 2: Geographic Variation in Temperature Statistics

(a) Yearly TA

(b) Yearly TAV

Figure 2 shows yearly TA and TAV for states in the contiguous US in graphs A and B, respectively.
The base period for calculating the metrics is 1960-2005. For graph A, blue regions are colder than the
base period while red regions are hotter. For graph B, light regions have lower variability than the base
period while darker red represents higher variability.
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Figure 3: TA and TAV in US in September 2015

The two panels show the different temperature metrics at the state level across the U.S. for September
2015. Panel A displays the temperature anomaly (TA) for each state, while Panel B highlights the
variability in temperature anomaly (TAV). In the heatmap, states with higher exposure are colored in
yellow, whereas those with lower exposure are represented in red

Figure 4: TA and TAV in New Mexico and Alabama
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Figure 4 shows for 2017, the left panel depicts the Temperature Anomaly (TA) for New Mexico (in blue)
and Arizona (in yellow), while the right panel illustrates the Temperature Anomaly Variability (TAV)
for the same states. Bars above the zero line indicate temperatures above the historical average, while
those below show temperatures that were lower. Despite both states presenting analogous temperature
anomalies, Arizona exhibited a higher variability, suggesting more pronounced fluctuations and potential
for extreme temperatures.

Figure 5: Geographic concentration of firms in the Russell 3000 based on 10-Ks

This histogram represents the geographic concentration of each firm in the Russell-3000 using the
methodology outlined in Garcia and Norli (2012) and Bernile et al. (2015). Specifically, we use a 10-K-
based measure of firm local exposure. We parse the 10-K filings of all Russell-3000 firms for each year
to identify the number of times the U.S. states and Washington DC are mentioned in sections 1A, 2, 6,
and 7. The firm-headquarter citation count is calculated by dividing the total number of mentions of
the headquartered state by the total mentions of all U.S. states and Washington DC. Finally, we average
this for each firm to obtain a metric which we define as the 10-K measure of state operational dispersion.
If the average number of mentions is closer to one then the firm only mentions their headquartered state
and vise versa.
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Figure 6: Unadjusted long-short returns of portfolios sorted on TA and TAV

Figure 6 presents the long-short portfolio returns sorted either on US state exposure to temperature
anomalies (TA) or volatility of temperature anomalies (TAV ). The long-short portfolio methodology
consists of sorting 40 states into exposure quartiles for a given month, i.e., the top ten most exposed
states to either TA or TAV in a given month are assigned to the short portfolio and vise versa. We
remove 10 states based on the lack of firms headquartered there. We calculate the average value-weighted
returns of firms headquartered in the states assigned to each of the four exposure portfolios. Each line is
therefore the monthly difference between the average return in the most versus lease vulnerable portfolio
based on either TA or TAV .
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A Appendix A

B Alternative construction of temperature variables
In the main text, we detail the construction of Ts,[d,m,y], where it represents an equally
weighted average of the temperature attributed to each grid cell within state s. Using an
equal weighting approach might overlook certain crucial aspects. This can be illustrated
by evaluating the US-wide temperature metrics, where each state is perceived as a distinct
cell. The challenge, when aggregating at the national level, is determining the appropriate
weighting. Using an equal weight implies that a pronounced TAV in a smaller state would
have the same impact on the final index as a similar TAV in a larger state. Consequently,
the selected weighting mechanism should reflect the relative importance of each state within
the broader national context.

Two logical choices emerge: GDP-based and population-based weights. Given that nei-
ther measure is available monthly (with GDP being quarterly and population yearly), we
forward-fill the data to derive monthly series compatible with TA and TAV. Using GDP
weights emphasizes the relative importance of economically productive regions, translating
to a specific economic impact of TA and TAV. On the other hand, population-based weights
prioritize human experiences: greater variability in a densely populated state holds more
significance than in a sparsely populated one.

Figure 7 contrasts the U.S.-wide TAV index based on different weighting criteria. A
comparison of the three measures reveals minor differences, particularly when juxtaposing
equal weighting against population or GDP-based weights.

Figure 7: TAV and weighting method

Figure 7 displays three primary index constructions for the period 2005-2020, each based on a distinct
weighting method for TAV for the US. The left panel illustrates an equi-weighted index construction,
where Wi = 1/Ni with Ni = 50. The central panel employs a population-based weighting method,
defined as wi = popi,t/

∑
i popi,t. The right panel presents the US-wide index using state GDP as the

weight, formulated as wi =
GDPi,t∑
iGDPi,t
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